spin network
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 14)

H-INDEX

12
(FIVE YEARS 2)

Author(s):  
Jakub Mielczarek

The article addresses the possibility of implementing spin network states, used in the loop quantum gravity approach to Planck scale physics on an adiabatic quantum computer. The discussion focuses on applying currently available technologies and analyzes a concrete example of a D-Wave machine. It is introduced a class of simple spin network states which can be implemented on the Chimera graph architecture of the D-Wave quantum processor. However, extension beyond the currently available quantum processor topologies is required to simulate more sophisticated spin network states. This may inspire new generations of adiabatic quantum computers. A possibility of simulating loop quantum gravity is discussed, and a method of solving a graph non-changing scalar (Hamiltonian) constraint with the use of adiabatic quantum computations is proposed. The presented results establish a basis for the future simulations of Planck scale physics, specifically quantum cosmological configurations, on quantum annealers.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 729
Author(s):  
James Moffat

I exploit the close connection between the tessellation of space-time in the Regge calculus and an Eilenberg homology to investigate the deep quantum nature of space-time in a simple bubble universe of a size consistent with the Planck regime. Following the mathematics allows me to define this granulated space-time as the embedding space of the skeleton of a computational spin network inside a quantum computer. This approach can be regarded as a quantum simulation of the equivalent physics. I can, therefore, define a fundamental characterisation of any high-energy physical process at the Planck scale as equivalent to a quantum simulation inside a quantum computer.


2021 ◽  
Vol 33 (17) ◽  
pp. 2008135
Author(s):  
Dédalo Sanz‐Hernández ◽  
Maryam Massouras ◽  
Nicolas Reyren ◽  
Nicolas Rougemaille ◽  
Vojtěch Schánilec ◽  
...  
Keyword(s):  

2020 ◽  
pp. 1-19
Author(s):  
Mohamed Elhamdadi ◽  
Mustafa Hajij ◽  
Jesse S. F. Levitt

The tail of a quantum spin network in the two-sphere is a [Formula: see text]-series associated to the network. We study the existence of the head and tail functions of quantum spin networks colored by [Formula: see text]. We compute the [Formula: see text]-series for an infinite family of quantum spin networks and give the relation between the tail of these networks and the tail of the colored Jones polynomial. Finally, we show that the family of quantum spin networks under study satisfies a natural product structure.


Author(s):  
Zongcheng Li

Under the big unified framework of quantum gravitational field and quantum repulsive field, the earlier in this series of work has comprehensively expanded the general relativity and loop quantum ring gravitation theory, set up the quantum repulsive field equation corresponding to the quantum gravitational field equation, and then established the quantum hedge-unified field equation describing the interaction of quantum gravitational field and quantum repulsive field; On this basis, the quantum repulsive universe equation corresponding to the quantum gravitational universe equation has be established, thus a set of new equations describing the expansive universe model under the condition of fully considering the hedge effect of quantum gravitational field and quantum repulsion field, which can be called the expansive universe equation of quantum hedge-unified field theory, has be established. Now, let's go deep into the arche-unified physics behind the creation of the universe. Although all kinds of inflationary universe models can solve cosmological problems to a certain extent, there is no natural and reasonable analysis and explanation for all cosmological and physical consequences. For example, it is impossible to predict a large tensor-scale ratio and a relatively large spectral index run at the same time. At present, string theory, membrane theory, loop quantum gravity theory, super-gravitational holography principle and M theory, which are the theoretical basis of cosmology, are basically established by simplification in the case of breaking away from the extreme background conditions of the universe. While cosmology, which is deficient in nature, cannot provide strong support for particle physics to further advance to a wider field and a deeper level. Due to the lack of new ideas, the construction of existing theoretical models is difficult. Therefore, the existing research can only be further promoted by new astronomical observation. Unlike existing studies, we concentrate on the emergence of the big rip-rebound clusters of quantum chaotic-reticulate distribution between the outwards-push of the universe as a whole (related to pseudo-vacuum energy, Higgs field, dark energy, etc.) and the inwards-pull of the universe in local scale (related to dark matter, quantum gravity and initial gravity separated from high-dimensional supergravity, and the initial strong force separated from the grand unified force subsequently). On the one hand, we find a great impetus to make the inflation of the universe into firstly-imposed suppression, then-imposed acceleration and finally-imposed deceleration, which really explains why the universe expands at a critical rate and has the same temperature in different regions, on the other hand, we find a fundamental unit of matter and its emerging clusters evolving in the big bang, inflation and expansion of the universe accompanied by the great rip-rebound clusters of quantum chaos-reticulate distribution, which can be reduced to an arche-pulsator of neither punctiform particle nor linear string. From these two aspects, it can been seen that the evolution of the early universe is much more complicated than people originally thought. The complexity of the super inflation of the universe is mainly reflected in the big rip-rebound cluster emerging behind the gravitational disturbance (the pressure and tensor disturbance related to dark matter), the repulsive disturbance (the pressure and scalar disturbance related to dark energy), the cosmological disturbance (related to the interaction between high-dimensional supergravity and high-dimensional superrepulsion). This is a system of nonlinear stochastic differential dynamics, or a quantum statistical physical process of nonlinear nonequilibrium state. In the new research paradigms established in this series, the arche-conjugation between the high-dimensional supergravity and the high-dimensional superrepulsion, as well as between the quantum gravity and the quantum repulsion, is higher than the supersymmetry, and then becomes the core concept of the new theory. In this series, cluster-inflating configuration, spin network space and cosmic paradigm vectors are proposed, so the model of the super-inflated universe with quantum chaos-reticulate distribution emerged under the great impetus. The new model reveals that the unified inflation of the universe as a whole and the local inflation of the universe emerge together in the great impetus of the big rip-rebound cluster of quantum chaos-reticulate distribution. As a spin network model variable, the spatiotemporal mode variable is a vector composed of a series of variables, which variables include: dimension, curvature, range, expansion speed, dynamics, quantization, chaotic-reticulate distribution (inhomogeneity, concentration, fluctuation), synergy, and so on. Between particle physics and cosmology, this series of papers proposes the cosmic quantum evolution mode, the physical-sphere distributing configuration and the interaction situation variables, organizes the concepts, variables and models of these three levels, and establishes a systematic super-synergy paradigm. In this paradigm, the general Langevan equation and the general Fokker-Planck equation are established. For the quantum cosmic-sphere, a series of trend parameters are introduced to establish the dynamics of quantum gravitational mode and its master equation, and then to establish the operator distribution function and its motion equation of the action mode. For the Tachyon of upheaval in the rip-rebound-inflating of the universe, the hypothesis on the bifurcate-chaos wave of quantum is given, the quantum theory of the early photons in upheaval is set up, and the analysis on the particles of the ultrahigh energy cosmic ray from the γ ray burst is made. Finally, using Wigner-Ville distribution as a nonlinear time-frequency distribution, we establish the ultra-synergistic field equation of quantum-classic unifying action-sphere.


Universe ◽  
2020 ◽  
Vol 6 (7) ◽  
pp. 97 ◽  
Author(s):  
William J. Cunningham ◽  
Bianca Dittrich ◽  
Sebastian Steinhaus

Tensor network methods are powerful and efficient tools for studying the properties and dynamics of statistical and quantum systems, in particular in one and two dimensions. In recent years, these methods have been applied to lattice gauge theories, yet these theories remain a challenge in ( 2 + 1 ) dimensions. In this article, we present a new (decorated) tensor network algorithm, in which the tensors encode the lattice gauge amplitude expressed in the fusion basis. This has several advantages—firstly, the fusion basis does diagonalize operators measuring the magnetic fluxes and electric charges associated to a hierarchical set of regions. The algorithm allows therefore a direct access to these observables. Secondly the fusion basis is, as opposed to the previously employed spin network basis, stable under coarse-graining. Thirdly, due to the hierarchical structure of the fusion basis, the algorithm does implement predefined disentanglers. We apply this new algorithm to lattice gauge theories defined for the quantum group SU ( 2 ) k and identify a weak and a strong coupling phase for various levels k . As we increase the level k , the critical coupling g c decreases linearly, suggesting the absence of a deconfining phase for the continuous group SU ( 2 ) . Moreover, we illustrate the scaling behaviour of the Wilson loops in the two phases.


Author(s):  
Gregory Bentsen ◽  
Tomohiro Hashizume ◽  
Emily J. Davis ◽  
Anton S. Buyskikh ◽  
Monika H. Schleier-Smith ◽  
...  
Keyword(s):  

Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 36
Author(s):  
Maja Colautti ◽  
Filippo Caruso

Understanding the transport mechanisms and properties of complex networks is fundamental for the comprehension of a vast class of phenomena, from state transfer on a spin network to light-harvesting in photosynthetic complexes. It has been theoretically and experimentally demonstrated that noise can enhance transport when the system parameters are properly tuned, an effect known as noise-assisted transport (NAT). In this work we investigate the role of initial entanglement in the transfer efficiency of two walkers in a noisy network. By using the formalism of quantum walks, we define a range of small dephasing noise where initial site-entanglement provides transport enhancement and outperforms the NAT effect. Furthermore, we show two specific scenarios where entanglement-assisted transport can open faster channels for slow walkers and avoid a broken link in a communication line. These findings may be of potential interest for quantum technologies.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 211 ◽  
Author(s):  
Goffredo Chirco

This work is meant as a review summary of a series of recent results concerning the derivation of a holographic entanglement entropy formula for generic open spin network states in the group field theory (GFT) approach to quantum gravity. The statistical group-field computation of the Rényi entropy for a bipartite network state for a simple interacting GFT is reviewed, within a recently proposed dictionary between group field theories and random tensor networks, and with an emphasis on the problem of a consistent characterisation of the entanglement entropy in the GFT second quantisation formalism.


Sign in / Sign up

Export Citation Format

Share Document