double affine hecke algebra
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 5)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 27 (3) ◽  
Author(s):  
Siddhartha Sahi ◽  
Jasper V. Stokman ◽  
Vidya Venkateswaran

AbstractWe construct a family of representations of affine Hecke algebras, which depend on a number of auxiliary parameters $$g_i$$ g i , and which we refer to as metaplectic representations. We realize these representations as quotients of certain parabolically induced modules, and we apply the method of Baxterization (localization) to obtain actions of corresponding Weyl groups on rational functions on the torus. Our construction both generalizes and provides a conceptual proof of earlier results of Chinta, Gunnells, and Puskas, which had depended on a crucial computer verification. A key motivation is that when the parameters $$g_i$$ g i are specialized to certain Gauss sums, the resulting representation and its localization arise naturally in the consideration of p-parts of Weyl group multiple Dirichlet series. In this special case, similar results have been previously obtained in the literature by the study of Iwahori Whittaker functions for principal series of metaplectic covers of reductive p-adic groups. However this technique is not available for generic parameters $$g_i$$ g i . It turns out that the metaplectic representations can be extended to the double affine Hecke algebra, where they share many important properties with Cherednik’s basic polynomial representation, which they generalize. This allows us to introduce families of metaplectic polynomials, which depend on the $$g_i$$ g i , and which generalize Macdonald polynomials. In this paper we discuss in some detail the situation for type A, which is of considerable interest in algebraic combinatorics. We postpone some of the proofs, as well as a discussion of other types, to the sequel.


2021 ◽  
Vol 9 ◽  
Author(s):  
Takafumi Kouno ◽  
Satoshi Naito ◽  
Daniel Orr ◽  
Daisuke Sagaki

Abstract We prove an explicit inverse Chevalley formula in the equivariant K-theory of semi-infinite flag manifolds of simply laced type. By an ‘inverse Chevalley formula’ we mean a formula for the product of an equivariant scalar with a Schubert class, expressed as a $\mathbb {Z}\left [q^{\pm 1}\right ]$ -linear combination of Schubert classes twisted by equivariant line bundles. Our formula applies to arbitrary Schubert classes in semi-infinite flag manifolds of simply laced type and equivariant scalars $e^{\lambda }$ , where $\lambda $ is an arbitrary minuscule weight. By a result of Stembridge, our formula completely determines the inverse Chevalley formula for arbitrary weights in simply laced type except for type $E_8$ . The combinatorics of our formula is governed by the quantum Bruhat graph, and the proof is based on a limit from the double affine Hecke algebra. Thus our formula also provides an explicit determination of all nonsymmetric q-Toda operators for minuscule weights in ADE type.


Author(s):  
Eric M. Rains ◽  

We give a construction of an affine Hecke algebra associated to any Coxeter group acting on an abelian variety by reflections; in the case of an affine Weyl group, the result is an elliptic analogue of the usual double affine Hecke algebra. As an application, we use a variant of the C<sub>n</sub> version of the construction to construct a flat noncommutative deformation of the nth symmetric power of any rational surface with a smooth anticanonical curve, and give a further construction which conjecturally is a corresponding deformation of the Hilbert scheme of points.


2016 ◽  
Vol 152 (7) ◽  
pp. 1333-1384 ◽  
Author(s):  
Yuri Berest ◽  
Peter Samuelson

In this paper we propose and discuss implications of a general conjecture that there is a natural action of a rank 1 double affine Hecke algebra on the Kauffman bracket skein module of the complement of a knot $K\subset S^{3}$. We prove this in a number of nontrivial cases, including all $(2,2p+1)$ torus knots, the figure eight knot, and all 2-bridge knots (when $q=\pm 1$). As the main application of the conjecture, we construct three-variable polynomial knot invariants that specialize to the classical colored Jones polynomials introduced by Reshetikhin and Turaev. We also deduce some new properties of the classical Jones polynomials and prove that these hold for all knots (independently of the conjecture). We furthermore conjecture that the skein module of the unknot is a submodule of the skein module of an arbitrary knot. We confirm this for the same example knots, and we show that this implies that the colored Jones polynomials of $K$ satisfy an inhomogeneous recursion relation.


2014 ◽  
Vol 29 (29) ◽  
pp. 1430063 ◽  
Author(s):  
Alexey Sleptsov

We discuss a connection of HOMFLY polynomials with Hurwitz covers and represent a generating function for the HOMFLY polynomial of a given knot in all representations as Hurwitz partition function, i.e. the dependence of the HOMFLY polynomials on representation R is naturally captured by symmetric group characters (cut-and-join eigenvalues). The genus expansion and the loop expansion through Vassiliev invariants explicitly demonstrate this phenomenon. We study the genus expansion and discuss its properties. We also consider the loop expansion in details. In particular, we give an algorithm to calculate Vassiliev invariants, give some examples and discuss relations among Vassiliev invariants. Then we consider superpolynomials for torus knots defined via double affine Hecke algebra. We claim that the superpolynomials are not functions of Hurwitz type: symmetric group characters do not provide an adequate linear basis for their expansions. Deformation to superpolynomials is, however, straightforward in the multiplicative basis: the Casimir operators are beta-deformed to Hamiltonians of the Calogero–Moser–Sutherland system. Applying this trick to the genus and Vassiliev expansions, we observe that the deformation is fully straightforward only for the thin knots. Beyond the family of thin knots additional algebraically independent terms appear in the Vassiliev expansions. This can suggest that the superpolynomials do in fact contain more information about knots than the colored HOMFLY and Kauffman polynomials.


Sign in / Sign up

Export Citation Format

Share Document