K-Local hyperplane distance nearest neighbor algorithm and protein fold recognition

2007 ◽  
Vol 17 (4) ◽  
pp. 621-630 ◽  
Author(s):  
O. G. Okun
Author(s):  
YUEHUI CHEN ◽  
FENG CHEN ◽  
JACK Y. YANG ◽  
MARY QU YANG

Protein structure classification is an important issue in understanding the associations between sequence and structure as well as possible functional and evolutionary relationships. Recently structural genomes initiatives and other high-throughput experiments have populated the biological databases at a rapid pace. In this paper, three types of classifiers, k nearest neighbors, class center and nearest neighbor and probabilistic neural networks and their homogenous ensemble for multiclass protein fold recognition problem are evaluated firstly, and then a heterogenous ensemble Voting System is designed for the same problem. The different features and/or their combinations extracted from the protein fold dataset are used in these classification models. The heterogenous classification results are then put into a voting system to get the final result. The experimental results show that the proposed method can improve prediction accuracy by 4%–10% on a benchmark dataset containing 27 SCOP folds.


2004 ◽  
Vol 15 (08) ◽  
pp. 1087-1094
Author(s):  
MUYOUNG HEO ◽  
MOOKYUNG CHEON ◽  
IKSOO CHANG

The usual two-body score (energy) function to recognize native folds of proteins is Miyazawa–Jernigan (MJ) pairwise-contact function. The pairwise-contact parameters between two amino acids in MJ function are symmetric in a sense that a directional order of amino acids sequence along the backbone of a protein is ignored in constructing score parameters. Here we report that we succeeded in constructing a nonsymmetric two-body score function, capturing a directional order of amino acids sequence, by a perceptron learning and a protein threading. We considered pairs of two adjacent amino acids that are separated by two consecutive peptide bonds with the backbone directionality from the N-terminus to the C-terminus of a protein. We also considered the local environmental character, such as the secondary structures and the hydrophobicity (solvation), of amino acids in protein structures. The score is a corresponding propensity for a directional alignment of these two adjacent amino acids with their local environments. The resulting score function simultaneously recognized native folds of 1006 proteins covering all representative proteins with a homology less than 30% among them. The quality of this score function was validated by a threading test of new distinct 382 proteins with a homology less than 90% among them, and it entailed a high success ratio for recognizing native folds of 364 (95.3%) proteins. It showed a good feasibility of designing protein score functions for protein fold recognition by a perceptron learning and a protein threading.


2014 ◽  
Vol 30 (13) ◽  
pp. 1850-1857 ◽  
Author(s):  
Pooya Zakeri ◽  
Ben Jeuris ◽  
Raf Vandebril ◽  
Yves Moreau

Sign in / Sign up

Export Citation Format

Share Document