A 2-approximation polynomial algorithm for a clustering problem

2013 ◽  
Vol 7 (4) ◽  
pp. 515-521 ◽  
Author(s):  
A. V. Kel’manov ◽  
V. I. Khandeev
2004 ◽  
Vol 14 (01n02) ◽  
pp. 85-104 ◽  
Author(s):  
XIAODONG WU ◽  
DANNY Z. CHEN ◽  
JAMES J. MASON ◽  
STEVEN R. SCHMID

Data clustering is an important theoretical topic and a sharp tool for various applications. It is a task frequently arising in geometric computing. The main objective of data clustering is to partition a given data set into clusters such that the data items within the same cluster are "more" similar to each other with respect to certain measures. In this paper, we study the pairwise data clustering problem with pairwise similarity/dissimilarity measures that need not satisfy the triangle inequality. By using a criterion, called the minimum normalized cut, we model the general pairwise data clustering problem as a graph partition problem. The graph partition problem based on minimizing the normalized cut is known to be NP-hard. For an undirected weighted graph of n vertices, we present a ((4+o(1)) In n)-approximation polynomial time algorithm for the minimum normalized cut problem; this is the first provably good approximation polynomial time algorithm for the problem. We also give a more efficient algorithm for this problem by sacrificing the approximation ratio slightly. Further, our scheme achieves a ((2+o(1)) In n)-approximation polynomial time algorithm for computing the sparsest cuts in edge-weighted and vertex-weighted undirected graphs, improving the previously best known approximation ratio by a constant factor. Some applications and implementation work of our approximation normalized cut algorithms are also discussed.


2017 ◽  
Vol 27 (3) ◽  
pp. 365-370 ◽  
Author(s):  
A. A. Ageev ◽  
A. V. Kel’manov ◽  
A. V. Pyatkin ◽  
S. A. Khamidullin ◽  
V. V. Shenmaier

2018 ◽  
Vol 1 (1) ◽  
pp. 87-112 ◽  
Author(s):  
Kamal Z. Zamli ◽  
◽  
Abdulrahman Alsewari ◽  
Bestoun S. Ahmed ◽  
◽  
...  

Author(s):  
Laith Mohammad Abualigah ◽  
Essam Said Hanandeh ◽  
Ahamad Tajudin Khader ◽  
Mohammed Abdallh Otair ◽  
Shishir Kumar Shandilya

Background: Considering the increasing volume of text document information on Internet pages, dealing with such a tremendous amount of knowledge becomes totally complex due to its large size. Text clustering is a common optimization problem used to manage a large amount of text information into a subset of comparable and coherent clusters. Aims: This paper presents a novel local clustering technique, namely, β-hill climbing, to solve the problem of the text document clustering through modeling the β-hill climbing technique for partitioning the similar documents into the same cluster. Methods: The β parameter is the primary innovation in β-hill climbing technique. It has been introduced in order to perform a balance between local and global search. Local search methods are successfully applied to solve the problem of the text document clustering such as; k-medoid and kmean techniques. Results: Experiments were conducted on eight benchmark standard text datasets with different characteristics taken from the Laboratory of Computational Intelligence (LABIC). The results proved that the proposed β-hill climbing achieved better results in comparison with the original hill climbing technique in solving the text clustering problem. Conclusion: The performance of the text clustering is useful by adding the β operator to the hill climbing.


2016 ◽  
Vol 283 ◽  
pp. 1-5 ◽  
Author(s):  
Yong Liu ◽  
Zongtian Wei ◽  
Jiarong Shi ◽  
Anchan Mai
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document