scholarly journals Effect of plasma exchange on blood viscosity and cerebral blood flow.

BMJ ◽  
1982 ◽  
Vol 284 (6331) ◽  
pp. 1733-1736 ◽  
Author(s):  
M M Brown ◽  
J Marshall
Stroke ◽  
1982 ◽  
Vol 13 (3) ◽  
pp. 296-301 ◽  
Author(s):  
J Grotta ◽  
R Ackerman ◽  
J Correia ◽  
G Fallick ◽  
J Chang

2016 ◽  
Vol 2 (3) ◽  
pp. 195-199
Author(s):  
A. Postiglione ◽  
A. Soricelli ◽  
N. Scarpato ◽  
F. Lamenza ◽  
M. Mancini

2001 ◽  
Vol 280 (6) ◽  
pp. H2591-H2597 ◽  
Author(s):  
A. Rebel ◽  
C. Lenz ◽  
H. Krieter ◽  
K. F. Waschke ◽  
K. Van Ackern ◽  
...  

We addressed the question to which extent cerebral blood flow (CBF) is maintained when, in addition to a high blood viscosity (Bvis) arterial oxygen content (CaO2 ) is gradually decreased. CaO2 was decreased by hemodilution to hematocrits (Hct) of 30, 22, 19, and 15% in two groups. One group received blood replacement (BR) only and served as the control. The second group received an additional high viscosity solution of polyvinylpyrrolidone (BR/PVP). Bvis was reduced in the BR group and was doubled in the BR/PVP. Despite different Bvis, CBF did not differ between BR and BR/PVP rats at Hct values of 30 and 22%, indicating a complete vascular compensation of the increased Bvis at decreased CaO2 . At an Hct of 19%, local cerebral blood flow (LCBF) in some brain structures was lower in BR/PVP rats than in BR rats. At the lowest Hct of 15%, LCBF of 15 brain structures and mean CBF were reduced in BR/PVP. The resulting decrease in cerebral oxygen delivery in the BR/PVP group indicates a global loss of vascular compensation. We concluded that vasodilating mechanisms compensated for Bvis increases thereby maintaining constant cerebral oxygen delivery. Compensatory mechanisms were exhausted at a Hct of 19% and lower as indicated by the reduction of CBF and cerebral oxygen delivery.


1994 ◽  
Vol 81 (SUPPLEMENT) ◽  
pp. A689
Author(s):  
K. F. Wasbke ◽  
H. Krieter ◽  
G. Hagen ◽  
D. M. Albrecht ◽  
K. van Ackern ◽  
...  

1994 ◽  
Vol 267 (2) ◽  
pp. H471-H476
Author(s):  
M. Dalinghaus ◽  
H. Knoester ◽  
J. W. Gratama ◽  
J. Van der Meer ◽  
W. G. Zijlstra ◽  
...  

In chronic hypoxemia blood flow and oxygen supply to vital organs are maintained, but to nonvital organs they are decreased. We measured organ blood flows (microspheres) and whole blood viscosity in 10 chronically hypoxemic lambs, with an atrial septal defect and pulmonary stenosis, and in 8 control lambs. Vascular hindrance (resistance/viscosity) was calculated to determine to what extent the effect of increased blood viscosity on organ blood flow was compensated for by a decrease in vascular tone. Arterial oxygen saturation was decreased (68 +/- 10 vs. 91 +/- 3%, P < 0.001), and both hemoglobin concentration (145 +/- 10 vs. 109 +/- 9 g/l, P < 0.05) and blood viscosity (4.4 +/- 0.6 vs. 3.6 +/- 0.6 mPa.s, P < 0.05) were increased in hypoxemic lambs. Systemic blood flow, oxygen supply, oxygen uptake, and blood pressures were not significantly different between hypoxemic and control lambs. Myocardial and cerebral blood flow was maintained in hypoxemic lambs, whereas renal, gastrointestinal, splenic, and thyroidal blood flows were at least 30% lower. Vascular hindrance was significantly decreased in the myocardium and tended to be lower in the brain of hypoxemic lambs, but in all other organs it was similar to that in control lambs. It is concluded that blood flow is redistributed in chronic hypoxemia in lambs; myocardial and cerebral blood flow is maintained, whereas blood flow to splanchnic organs, the kidneys, and the thyroids is decreased. The decreased blood flow to organs is a consequence of the increased whole blood viscosity.


Sign in / Sign up

Export Citation Format

Share Document