The Dual Schur Complement Method with Well-Posed Local Neumann Problems: Regularization with a Perturbed Lagrangian Formulation

1993 ◽  
Vol 14 (3) ◽  
pp. 752-759 ◽  
Author(s):  
Charbel Farhat ◽  
Po-Shu Chen ◽  
Francois-Xavier Roux

2010 ◽  
Vol 27 (4) ◽  
pp. 1017-1054 ◽  
Author(s):  
Angelo Alvino ◽  
Andrea Cianchi ◽  
Vladimir G. Maz'ya ◽  
Anna Mercaldo






2015 ◽  
Vol 55 (4) ◽  
pp. 737-754 ◽  
Author(s):  
Manuel Tur ◽  
Jose Albelda ◽  
Jose Manuel Navarro-Jimenez ◽  
Juan Jose Rodenas


Author(s):  
Olof Staffans
Keyword(s):  


2005 ◽  
Vol 10 (4) ◽  
pp. 365-381 ◽  
Author(s):  
Š. Repšys ◽  
V. Skakauskas

We present results of the numerical investigation of the homogenous Dirichlet and Neumann problems to an age-sex-structured population dynamics deterministic model taking into account random mating, female’s pregnancy, and spatial diffusion. We prove the existence of separable solutions to the non-dispersing population model and, by using the numerical experiment, corroborate their local stability.



AIAA Journal ◽  
1999 ◽  
Vol 37 ◽  
pp. 434-442
Author(s):  
Keh-Chin Chang ◽  
Jinn-Cherng Yang


Sign in / Sign up

Export Citation Format

Share Document