An Arithmetic Method for Obtaining Local Limit Theorems for Lattice Random Variables

1970 ◽  
Vol 15 (1) ◽  
pp. 87-97 ◽  
Author(s):  
D. A. Moskvin ◽  
L. P. Postnikova ◽  
A. A. Yudin

Author(s):  
C. W. Anderson

Let , where the Xi, i = 1, 2, … are independent identically distributed random variables. Classical extreme value theory, described for example in the books of do Haan(6) and Galambos(3) gives conditions under which there exist constants an > 0 and bn such thatwhere G(x) is taken to be one of the extreme value distributions G1(x) = exp (− e−x), G2(x) = exp (− x−a) (x > 0, α > 0) and G3(x) = exp (−(− x)α) (x < 0, α > 0).





1985 ◽  
Vol 13 (1) ◽  
pp. 97-114 ◽  
Author(s):  
Narasinga R. Chaganty ◽  
J. Sethuraman


2018 ◽  
Vol 28 (6) ◽  
pp. 405-420
Author(s):  
Aleksandr N. Timashev

Abstract Let a function f(z) be decomposed into a power series with nonnegative coefficients which converges in a circle of positive radius R. Let the distribution of the random variable ξn, n ∈ {1, 2, …}, be defined by the formula $$\begin{array}{} \displaystyle P\{\xi_n=N\}=\frac{\mathrm{coeff}_{z^n}\left(\frac{\left(f(z)\right)^N}{N!}\right)}{\mathrm{coeff}_{z^n}\left(\exp(f(z))\right)},\,N=0,1,\ldots \end{array} $$ for some ∣z∣ < R (if the denominator is positive). Examples of appearance of such distributions in probabilistic combinatorics are given. Local theorems on asymptotical normality for distributions of ξn are proved in two cases: a) if f(z) = (1 − z)−λ, λ = const ∈ (0, 1] for ∣z∣ < 1, and b) if all positive coefficients of expansion f (z) in a power series are equal to 1 and the set A of their numbers has the form $$\begin{array}{} \displaystyle A = \{m^r \, | \, m \in \mathbb{N} \}, \, \, r = \mathrm {const},\; r \in \{2,3,\ldots\}. \end{array} $$ A hypothetical general local limit normal theorem for random variables ξn is stated. Some examples of validity of the statement of this theorem are given.



2008 ◽  
Vol 48 ◽  
Author(s):  
Leonas Saulis ◽  
Dovilė Deltuvienė

Theorems of large deviations, both in the Cramer zone and the Linnik power zones, for the normal approximation of the distribution density function of normalized sum Sv = \sum∞ k=0 vkXk, 0 < v < 1, of i.i.d. random variables (r.v.) X0, X1, . . . satisfying the generalized Bernstein’s condition are obtained.



Sign in / Sign up

Export Citation Format

Share Document