renewal theorem
Recently Published Documents


TOTAL DOCUMENTS

171
(FIVE YEARS 11)

H-INDEX

16
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1943
Author(s):  
Xiaoli Wang ◽  
Gang Shi ◽  
Yuhong Sheng

An uncertain random variable is a tool used to research indeterminacy quantities involving randomness and uncertainty. The concepts of an ’uncertain random process’ and an ’uncertain random renewal process’ have been proposed in order to model the evolution of an uncertain random phenomena. This paper designs a new uncertain random process, called the uncertain random delayed renewal process. It is a special type of uncertain random renewal process, in which the first arrival interval is different from the subsequent arrival interval. We discuss the chance distribution of the uncertain random delayed renewal process. Furthermore, an uncertain random delay renewal theorem is derived, and the chance distribution limit of long-term expected renewal rate of the uncertain random delay renewal system is proved. Then its average uncertain random delay renewal rate is obtained, and it is proved that it is convergent in the chance distribution. Finally, we provide several examples to illustrate the consistency with the existing conclusions.


2021 ◽  
Vol 175 (1) ◽  
Author(s):  
Eugenia Franco ◽  
Mats Gyllenberg ◽  
Odo Diekmann

AbstractDespite their relevance in mathematical biology, there are, as yet, few general results about the asymptotic behaviour of measure valued solutions of renewal equations on the basis of assumptions concerning the kernel. We characterise, via their kernels, a class of renewal equations whose measure-valued solution can be expressed in terms of the solution of a scalar renewal equation. The asymptotic behaviour of the solution of the scalar renewal equation, is studied via Feller’s classical renewal theorem and, from it, the large time behaviour of the solution of the original renewal equation is derived.


2020 ◽  
Vol 52 (6) ◽  
pp. 1174-1190
Author(s):  
Kôhei Uchiyama
Keyword(s):  

Fractals ◽  
2020 ◽  
Vol 28 (03) ◽  
pp. 2050054
Author(s):  
KUN CHENG ◽  
DIRONG CHEN ◽  
YUMEI XUE ◽  
QIAN ZHANG

In this paper, a network is generated from a Sierpinski-type hexagon by applying the encoding method in fractal. The criterion of neighbor is established to quantify the relationships among the nodes in the network. Based on the self-similar structures, we verify the scale-free and small-world effects. The power-law exponent on degree distribution is derived to be [Formula: see text] and the average clustering coefficients are shown to be larger than [Formula: see text]. Moreover, we give the bounds of the average path length of our proposed network from the renewal theorem and self-similarity.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950120
Author(s):  
JUAN DENG ◽  
QIN WANG

This paper concerns the average distances of evolving networks modeled by Sierpinski tetrahedron. We express the limit of average distances on reorganized networks as an integral of geodesic distance on Sierpinski tetrahedron. Based on the self-similarity and renewal theorem, we obtain the asymptotic formula on the average distance of our evolving networks.


2019 ◽  
Vol 56 (2) ◽  
pp. 602-623
Author(s):  
Daryl J. Daley ◽  
Masakiyo Miyazawa

AbstractMartingales constitute a basic tool in stochastic analysis; this paper considers their application to counting processes. We use this tool to revisit a renewal theorem and give extensions for various counting processes. We first consider a renewal process as a pilot example, deriving a new semimartingale representation that differs from the standard decomposition via the stochastic intensity function. We then revisit Blackwell’s renewal theorem, its refinements and extensions. Based on these observations, we extend the semimartingale representation to a general counting process, and give conditions under which asymptotic behaviour similar to Blackwell’s renewal theorem holds.


Sign in / Sign up

Export Citation Format

Share Document