Parameter dependence of stochastic resonance in the FitzHugh-Nagumo neuron model driven by trichotomous noise

2015 ◽  
Vol 88 (5) ◽  
Author(s):  
Huiqing Zhang ◽  
Tingting Yang ◽  
Yong Xu ◽  
Wei Xu
2017 ◽  
Vol 31 (30) ◽  
pp. 1750231 ◽  
Author(s):  
Lifeng Lin ◽  
Huiqi Wang ◽  
Suchuan Zhong

The stochastic resonance (SR) phenomena of a linear fractional oscillator with random trichotomous mass and random trichotomous frequency are investigate in this paper. By using the Shapiro–Loginov formula and the Laplace transformation technique, the exact expression of the first-order moment of the system’s steady response is derived. The numerical results demonstrate that the evolution of the output amplitude is nonmonotonic with frequency of the periodic signal, noise parameters and fractional order. The generalized SR (GSR) phenomena, including single GSR (SGSR) and doubly GSR (DGSR), and trebly GSR (TGSR), are detected in this fractional system. Then, the GSR regions in the [Formula: see text] plane are determined through numerical calculations. In addition, the interaction effect of the multiplicative trichotomous noise and memory can diversify the stochastic multiresonance (SMR) phenomena, and induce reverse-resonance phenomena.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050023
Author(s):  
Gang Zhang ◽  
Xia Wu ◽  
Tianqi Zhang

Weak signal detection is an important topic, which has been widely studied in various fields. Different from other signal processing methods, stochastic resonance (SR) can utilize noise to enhance the characteristic frequency. Inspired by the unique advantage of SR, the strongly coupled Duffing and Van der pol SR system (SCD-VSR) is investigated. The simulation results show that the relationship between the output average signal–noise ratio increase (MSNRI) and different jump values of trichotomous noise presents different odd symmetrical distribution. It is also found that a double SR phenomenon could be observed when the damping coefficient of Van der pol system is small. Moreover, as the damping coefficient of the Duffing system increases, the output response would become gradually smooth. In addition,a smaller damping force coupling coefficient combined with a large restoring force coupling coefficient would achieve better system response. In the case of detecting an analog signal, MSNRI of SCD-VSR is larger than that of both classical bistable SR system (CBSR) and coupled Duffing SR system (CDSR). In addition, the experiments suggest that SCD-VSR could obtain a higher MSNRI and better detection effect, which implies the performance is superior to CBSR and CDSR.


1996 ◽  
Vol 53 (1) ◽  
pp. 1273-1275 ◽  
Author(s):  
François Chapeau-Blondeau ◽  
Xavier Godivier ◽  
Nicolas Chambet

Sign in / Sign up

Export Citation Format

Share Document