SIMULTANEOUS EMBEDDING OF EMBEDDED PLANAR GRAPHS

2013 ◽  
Vol 23 (02) ◽  
pp. 93-126 ◽  
Author(s):  
PATRIZIO ANGELINI ◽  
GIUSEPPE DI BATTISTA ◽  
FABRIZIO FRATI

A simultaneous embedding with fixed edges (SEFE) of a set of k planar graphs G1,…,Gk on the same set of vertices is a set of k planar drawings of G1,…,Gk, respectively, such that each vertex is placed on the same point in all the drawings and each edge is represented by the same Jordan curve in the drawings of all the graphs it belongs to. A simultaneous geometric embedding (SGE) is a SEFE in which the edges are represented by straight-line segments. Given k planar graphs G1,…,Gk, deciding whether they admit a SEFE and whether they admit an SGE are NP-hard problems, for k ≥ 3 and for k ≥ 2, respectively. In this paper we consider the complexity of SEFE and of SGE when the graphs G1,…,Gk have a fixed planar embedding. In sharp contrast with the NP-hardness of SEFE for three non-embedded planar graphs, we show that SEFE is quadratic-time solvable for three graphs with a fixed planar embedding. Furthermore, we show that, given k embedded planar graphs G1,…,Gk, deciding whether a SEFE of G1,…,Gk exists and deciding whether an SGE of G1,…,Gk exists are NP-hard problems, for k ≥ 14 and k ≥ 13, respectively.

2007 ◽  
Vol 17 (02) ◽  
pp. 139-160 ◽  
Author(s):  
EMILIO DI GIACOMO ◽  
GIUSEPPE LIOTTA

Let G1 and G2 be two planar graphs having some vertices in common. A simultaneous embedding of G1 and G2 is a pair of crossing-free drawings of G1 and G2 such that each vertex in common is represented by the same point in both drawings. In this paper we show that an outerplanar graph and a simple path can be simultaneously embedded with fixed edges such that the edges in common are straight-line segments while the other edges of the outerplanar graph can have at most one bend per edge. We then exploit the technique for outerplanar graphs and paths to study simultaneous embeddings of other pairs of graphs. Namely, we study simultaneous embedding with fixed edges of: (i) two outerplanar graphs sharing a forest of paths and (ii) an outerplanar graph and a cycle.


2010 ◽  
Vol 10 (1&2) ◽  
pp. 141-151
Author(s):  
S. Beigi

Although it is believed unlikely that $\NP$-hard problems admit efficient quantum algorithms, it has been shown that a quantum verifier can solve NP-complete problems given a "short" quantum proof; more precisely, NP\subseteq QMA_{\log}(2) where QMA_{\log}(2) denotes the class of quantum Merlin-Arthur games in which there are two unentangled provers who send two logarithmic size quantum witnesses to the verifier. The inclusion NP\subseteq QMA_{\log}(2) has been proved by Blier and Tapp by stating a quantum Merlin-Arthur protocol for 3-coloring with perfect completeness and gap 1/24n^6. Moreover, Aaronson et al. have shown the above inclusion with a constant gap by considering $\widetilde{O}(\sqrt{n})$ witnesses of logarithmic size. However, we still do not know if QMA_{\log}(2) with a constant gap contains NP. In this paper, we show that 3-SAT admits a QMA_{\log}(2) protocol with the gap 1/n^{3+\epsilon}} for every constant \epsilon>0.


2020 ◽  
Vol 10 (6) ◽  
pp. 2075 ◽  
Author(s):  
Shih-Cheng Horng ◽  
Shieh-Shing Lin

The stochastic inequality constrained optimization problems (SICOPs) consider the problems of optimizing an objective function involving stochastic inequality constraints. The SICOPs belong to a category of NP-hard problems in terms of computational complexity. The ordinal optimization (OO) method offers an efficient framework for solving NP-hard problems. Even though the OO method is helpful to solve NP-hard problems, the stochastic inequality constraints will drastically reduce the efficiency and competitiveness. In this paper, a heuristic method coupling elephant herding optimization (EHO) with ordinal optimization (OO), abbreviated as EHOO, is presented to solve the SICOPs with large solution space. The EHOO approach has three parts, which are metamodel construction, diversification and intensification. First, the regularized minimal-energy tensor-product splines is adopted as a metamodel to approximately evaluate fitness of a solution. Next, an improved elephant herding optimization is developed to find N significant solutions from the entire solution space. Finally, an accelerated optimal computing budget allocation is utilized to select a superb solution from the N significant solutions. The EHOO approach is tested on a one-period multi-skill call center for minimizing the staffing cost, which is formulated as a SICOP. Simulation results obtained by the EHOO are compared with three optimization methods. Experimental results demonstrate that the EHOO approach obtains a superb solution of higher quality as well as a higher computational efficiency than three optimization methods.


2011 ◽  
pp. 43-67 ◽  
Author(s):  
Stephan Hartmann ◽  
Pedro Pinto ◽  
Thomas Runkler ◽  
João Sousa

Sign in / Sign up

Export Citation Format

Share Document