scholarly journals LIMIT GROUPS ARE CONJUGACY SEPARABLE

2007 ◽  
Vol 17 (04) ◽  
pp. 851-857 ◽  
Author(s):  
S. C. CHAGAS ◽  
P. A. ZALESSKII

A limit group is a finitely-generated subgroup of a fully residually free group. We prove in this paper the result announced in the title.

2014 ◽  
Vol 24 (02) ◽  
pp. 207-231
Author(s):  
Brent B. Solie

Let Γ be a fixed hyperbolic group. The Γ-limit groups of Sela are exactly the finitely generated, fully residually Γ groups. We introduce a new invariant of Γ-limit groups called Γ-discriminating complexity. We further show that the Γ-discriminating complexity of any Γ-limit group is asymptotically dominated by a polynomial.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Isabel Fernández Martínez ◽  
Denis Serbin

Abstract In this paper, we consider the conjugacy stability property of subgroups and provide effective procedures to solve the problem in several classes of groups. In particular, we start with free groups, that is, we give an effective procedure to find out if a finitely generated subgroup of a free group is conjugacy stable. Then we further generalize this result to quasi-convex subgroups of torsion-free hyperbolic groups and finitely generated subgroups of limit groups.


2006 ◽  
Vol 16 (04) ◽  
pp. 689-737 ◽  
Author(s):  
ALEXEI G. MYASNIKOV ◽  
VLADIMIR N. REMESLENNIKOV ◽  
DENIS E. SERBIN

Let F = F(X) be a free group with basis X and ℤ[t] be a ring of polynomials with integer coefficients in t. In this paper we develop a theory of (ℤ[t],X)-graphs — a powerful tool in studying finitely generated fully residually free (limit) groups. This theory is based on the Kharlampovich–Myasnikov characterization of finitely generated fully residually free groups as subgroups of the Lyndon's group Fℤ[t], the author's representation of elements of Fℤ[t] by infinite (ℤ[t],X)-words, and Stallings folding method for subgroups of free groups. As an application, we solve the membership problem for finitely generated subgroups of Fℤ[t], as well as for finitely generated fully residually free groups.


2016 ◽  
Vol 26 (03) ◽  
pp. 551-564
Author(s):  
Dessislava H. Kochloukova

We study when an abstract finitely presented group [Formula: see text] of cohomological dimension [Formula: see text] has pro-[Formula: see text] completion [Formula: see text] of cohomological dimension [Formula: see text]. Furthermore, we prove that for a tree hyperbolic limit group [Formula: see text] we have [Formula: see text] and show an example of a hyperbolic limit group [Formula: see text] that is not free and [Formula: see text] is free pro-[Formula: see text]. For a finitely generated residually free group [Formula: see text] that is not a limit group, we show that [Formula: see text] is not free pro-[Formula: see text].


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2011 ◽  
Vol 21 (04) ◽  
pp. 595-614 ◽  
Author(s):  
S. LIRIANO ◽  
S. MAJEWICZ

If G is a finitely generated group and A is an algebraic group, then RA(G) = Hom (G, A) is an algebraic variety. Define the "dimension sequence" of G over A as Pd(RA(G)) = (Nd(RA(G)), …, N0(RA(G))), where Ni(RA(G)) is the number of irreducible components of RA(G) of dimension i (0 ≤ i ≤ d) and d = Dim (RA(G)). We use this invariant in the study of groups and deduce various results. For instance, we prove the following: Theorem A.Let w be a nontrivial word in the commutator subgroup ofFn = 〈x1, …, xn〉, and letG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety andV-1 = {ρ | ρ ∈ RSL(2, ℂ)(Fn), ρ(w) = -I} ≠ ∅, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). Theorem B.Let w be a nontrivial word in the free group on{x1, …, xn}with even exponent sum on each generator and exponent sum not equal to zero on at least one generator. SupposeG = 〈x1, …, xn; w = 1〉. IfRSL(2, ℂ)(G)is an irreducible variety, thenPd(RSL(2, ℂ)(G)) ≠ Pd(RPSL(2, ℂ)(G)). We also show that if G = 〈x1, . ., xn, y; W = yp〉, where p ≥ 1 and W is a word in Fn = 〈x1, …, xn〉, and A = PSL(2, ℂ), then Dim (RA(G)) = Max {3n, Dim (RA(G′)) +2 } ≤ 3n + 1 for G′ = 〈x1, …, xn; W = 1〉. Another one of our results is that if G is a torus knot group with presentation 〈x, y; xp = yt〉 then Pd(RSL(2, ℂ)(G))≠Pd(RPSL(2, ℂ)(G)).


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hip Kuen Chong ◽  
Daniel T. Wise

Abstract We study a family of finitely generated residually finite groups. These groups are doubles F 2 * H F 2 F_{2}*_{H}F_{2} of a rank-2 free group F 2 F_{2} along an infinitely generated subgroup 𝐻. Varying 𝐻 yields uncountably many groups up to isomorphism.


Author(s):  
Sam Shepherd ◽  
Daniel J. Woodhouse

Abstract We study the quasi-isometric rigidity of a large family of finitely generated groups that split as graphs of groups with virtually free vertex groups and two-ended edge groups. Let G be a group that is one-ended, hyperbolic relative to virtually abelian subgroups, and has JSJ decomposition over two-ended subgroups containing only virtually free vertex groups that are not quadratically hanging. Our main result is that any group quasi-isometric to G is abstractly commensurable to G. In particular, our result applies to certain “generic” HNN extensions of a free group over cyclic subgroups.


1979 ◽  
Vol 31 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
A. M. Brunner ◽  
R. G. Burns

In [5] M. Hall Jr. proved, without stating it explicitly, that every finitely generated subgroup of a free group is a free factor of a subgroup of finite index. This result was made explicit, and used to give simpler proofs of known results, in [1] and [7]. The standard generalization to free products was given in [2]: If, following [13], we call a group in which every finitely generated subgroup is a free factor of a subgroup of finite index an M. Hall group, then a free product of M. Hall groups is again an M. Hall group. The recent appearance of [13], in which this result is reproved, and the rather restrictive nature of the property of being an M. Hall group, led us to attempt to determine the structure of such groups. In this paper we go a considerable way towards achieving this for those M. Hall groups which are both finitely generated and accessible.


1996 ◽  
Vol 39 (3) ◽  
pp. 294-307 ◽  
Author(s):  
Goansu Kim

AbstractWe show that polygonal products of polycyclic-by-finite groups amalgamating central cyclic subgroups, with trivial intersections, are conjugacy separable. Thus polygonal products of finitely generated abelian groups amalgamating cyclic subgroups, with trivial intersections, are conjugacy separable. As a corollary of this, we obtain that the group A1 *〈a1〉A2 *〈a2〉 • • • *〈am-1〉Am is conjugacy separable for the abelian groups Ai.


Sign in / Sign up

Export Citation Format

Share Document