scholarly journals AN A POSTERIORI ERROR ESTIMATOR FOR hp-ADAPTIVE DISCONTINUOUS GALERKIN METHODS FOR ELLIPTIC EIGENVALUE PROBLEMS

2012 ◽  
Vol 22 (10) ◽  
pp. 1250030 ◽  
Author(s):  
STEFANO GIANI ◽  
EDWARD J. C. HALL

In this paper we present a residual-based a posteriori error estimator for hp-adaptive discontinuous Galerkin methods for elliptic eigenvalue problems. In particular, we use as a model problem the Laplace eigenvalue problem on bounded domains in ℝd, d = 2, 3, with homogeneous Dirichlet boundary conditions. Analogous error estimators can be easily obtained for more complicated elliptic eigenvalue problems. We prove the reliability and efficiency of the residual-based error estimator also for non-convex domains and use numerical experiments to show that, under an hp-adaptation strategy driven by the error estimator, exponential convergence can be achieved, even for non-smooth eigenfunctions.

2019 ◽  
Vol 144 (3) ◽  
pp. 585-614
Author(s):  
Joscha Gedicke ◽  
Arbaz Khan

AbstractIn this paper, we present a divergence-conforming discontinuous Galerkin finite element method for Stokes eigenvalue problems. We prove a priori error estimates for the eigenvalue and eigenfunction errors and present a residual based a posteriori error estimator. The a posteriori error estimator is proven to be reliable and (locally) efficient. We finally present some numerical examples that verify the a priori convergence rates and the reliability and efficiency of the residual based a posteriori error estimator.


Sign in / Sign up

Export Citation Format

Share Document