thin plate
Recently Published Documents


TOTAL DOCUMENTS

2633
(FIVE YEARS 386)

H-INDEX

51
(FIVE YEARS 7)

Author(s):  
Yudai Fujii ◽  
Takumi Fujimaki ◽  
Masashi Suzuki ◽  
Shoji Kakio

Abstract The propagation and resonance properties of longitudinal leaky surface acoustic waves (LLSAWs) on bonded structures consisting of a quartz (Qz) thin plate and a Qz support substrate with different Euler angles were investigated theoretically. By using both an X-cut Qz thin plate and a Qz support substrate with optimal Euler angles, we obtained LLSAWs with a larger coupling factor, a smaller attenuation, and a lower temperature coefficient of frequency than those on a single Qz substrate. Furthermore, from the resonance properties simulated by the finite element method, the bonded structures were found to exhibit a large admittance ratio and a high quality factor, which could not be obtained when using a single Qz substrate; the bandwidth however was as small as 0.016-0.086%.


Author(s):  
Takaaki Fukuchi ◽  
Naoki Mori ◽  
Takahiro Hayashi

Abstract Controlling sound fields is a key technology for noise removal, acoustic lenses, energy harvesting, etc. This study investigated the control of sound field by a periodic layered structure. At first, we formulated the wave propagation in a periodic layered structure and proved that the wave fields constructed by the periodic boundary conditions are limited to plane wave modes with discretely different propagation directions. Numerical calculations clarified that the desired plane wave mode can be obtained in the transmitted wave through an intermediate thin-plate stacked region in a periodic layered structure, in which Lamb waves travel in each plate at different phase velocities and create phase difference at the exit of the intermediate thin-plate region. Further numerical investigations revealed that tuning frequency and length of the thin-plate region provides wave field more dominantly with a single wanted plane wave mode.


2021 ◽  
Vol 15 (4) ◽  
pp. 8555-8564
Author(s):  
A.R. Bahari ◽  
M. A. Yunus ◽  
M.N. Abdul Rani ◽  
A.A. Prakasam

Modelling the dynamic characteristics of the bolted joints in a complex assembled structure with a high accuracy is very challenging due to the assumptions and uncertainties in the input data of the FE model. In this paper, the identification of the dynamic characteristics of the bolted joints structure using the CBUSH element connector is proposed. Modal testing and normal modes analysis are conducted on a thin plate assembled structure with bolted joints. In the simulation work, the CBUSH element connector is employed and the stiffness coefficient for six degrees of freedom is computed based on four flexibility formulae. The predicted natural frequencies and their corresponding mode shapes are compared against the results of the experimental work. A good agreement of the FE model is achieved by using the coefficient of stiffness as represented in the Swift flexibility formula. The study justifies that the dynamic characteristics of the bolt joints could be accurately modelled by using the CBUSH element connector. The obtained findings provided an alternative approach to modelling the dynamic characteristics of a thin plate assembled structure with bolted joints.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dae-Hyun Hwang ◽  
Jae-Hung Han

In general, bending waves transfer the largest portion of shock energy in a plate-like structure. This study proposes a new shock reduction method using an elastic patch designed to defocus the bending waves through the refraction of the waves so that it is possible to effectively reduce the propagating shock for a certain target area. Elastic patches of three different shapes were considered. The shock reduction performance of these patches was analytically, numerically, and experimentally investigated and compared. All results consistently showed that attached patches can effectively reduce passing waves for areas behind patches. Therefore, utilizing the proposed methods, we can reduce the transient shock response at certain target areas of various practical structures without degradation of structural stiffness or strength simply by bonding with an elastic patch.


Author(s):  
Assad Ali ◽  
Muhammad Akbar ◽  
Pan Huali ◽  
Muhammad Mohsin ◽  
Ou Guoqiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document