ON THE SOLVABILITY OF MAXIMUM ENTROPY MOMENT PROBLEMS IN TEXTURE ANALYSIS

2012 ◽  
Vol 22 (12) ◽  
pp. 1250043 ◽  
Author(s):  
MICHAEL JUNK ◽  
JOHANNES BUDDAY ◽  
THOMAS BÖHLKE

The estimation of the crystallite orientation distribution function based on the leading texture coefficients can be rephrased as a maximum entropy moment problem. In this paper, we prove the solvability of these moment problems under quite general assumptions on the moment functions which carries over to general locally compact and σ-compact Hausdorff topological groups.

2012 ◽  
Vol 27 (2) ◽  
pp. 114-116 ◽  
Author(s):  
Thomas Gnäupel-Herold

A software for the calculation of diffraction elastic constants (DEC) for materials both with and without preferred orientation was developed. All grain-interaction models that can use the crystallite orientation distribution function (ODF) are incorporated, including Kröner, Hill, inverse Kröner, and Reuss. The functions of the software include: reading the ODF in common textual formats, pole figure calculation, calculation of DEC for different (hkl,φ,ψ), calculation of anisotropic bulk constants from the ODF, calculation of macro-stress from lattice strain and vice versa, as well as mixture ratios of (hkl) of overlapped reflections in textured materials.


Texture ◽  
1972 ◽  
Vol 1 (1) ◽  
pp. 9-16 ◽  
Author(s):  
W. R. Krigbaum ◽  
Anna Marie Harkins Vasek

A test of the refinement procedure for improving the crystallite orientation distribution function is presented for a fiber texture sample of polyethylene terephthalate. This is a particularly difficult example because the triclinic unit cell offers no simplification due to symmetry, and the pole figures are sharply peaked. The analysis employed 17 observed pole figures and an additional 29 unobserved pole figures reconstructed from the crystallite orientation distribution function. After three cycles of refinement, in which the maximum value of the coefficient was increased from 6 to 16, the standard deviations, σq and σw, of the plane-normal and crystallite orientation distributions were reduced by about a factor of 3. The refined crystallite orientation distribution function indicates that the c-axis tends to align along the fiber axis for this polyethylene terephthalate sample.


1993 ◽  
Vol 21 (4) ◽  
pp. 233-250 ◽  
Author(s):  
David D. Sam ◽  
E. Turan Onat ◽  
Pavel I. Etingof ◽  
Brent L. Adams

The crystallite orientation distribution function (CODF) is reviewed in terms of classical spherical function representation and more recent coordinate free tensorial representation (CFTR). A CFTR is a Fourier expansion wherein the coefficients are tensors in the three-dimensional space. The equivalence between homogeneous harmonic polynomials of degree k and symmetric and traceless tensors of rank k allows a realization of these tensors by the method of harmonic polynomials. Such a method provides for the rapid assembly of a tensorial representation from microstructural orientation measurement data. The coefficients are determined to twenty-first order and expanded in the form of a crystallite orientation distribution function, and compared with previous calculations.


Sign in / Sign up

Export Citation Format

Share Document