A REPRESENTATION OF THE BELAVKIN EQUATION VIA PHASE SPACE FEYNMAN PATH INTEGRALS

Author(s):  
S. ALBEVERIO ◽  
G. GUATTERI ◽  
S. MAZZUCCHI

The Belavkin equation, describing the continuous measurement of the momentum of a quantum particle, is studied. The existence and uniqueness of its solution is proved via analytic tools. A stochastic characteristics method is applied. A rigorous representation of the solution by means of an infinite dimensional oscillatory integral (Feynman path integral) defined on the phase space is also given.

Author(s):  
Tomotada Ohtsuki

In 1988 Witten [W] proposed invariants Zk(M) ∈ ℂ (what we call, quantum G invariants) for a 3-manifold M and any integer k associated with a compact simple Lie group G. The invariant Zk(M) is formally expressed by an integral (Feynman path integral) over the (infinite dimensional) quotient space of the all connections in G-bundles on M modulo gauge transformations. If one believes in Feynman path integrals, one can expect the asymptotic formula of Zk(M) for large k predicted by perturbation theory. As in [W], the asymptotic formula (which is a power series in k−1) is given by a sum of contributions from flat connections, since the integral contains an integrand which is wildly oscillatory apart from flat connections for large k. More precise forms of the asymptotic formula are studied in [AS1], [AS2] and [Ko].


1996 ◽  
Vol 08 (08) ◽  
pp. 1161-1185 ◽  
Author(s):  
JORGE REZENDE

A method of stationary phase for the normalized-oscillatory integral on Hilbert space is developed in the case where the phase function has a finite number of critical points which are non-degenerate. Applications to the Feynman path integral and the semi-classical limit of quantum mechanics are given.


Sign in / Sign up

Export Citation Format

Share Document