On solutions for a class of fractional Kirchhoff-type problems with Trudinger–Moser nonlinearity

Author(s):  
Manassés de Souza ◽  
Uberlandio B. Severo ◽  
Thiago Luiz do Rêgo

In this paper, we prove the existence of at least three nontrivial solutions for the following class of fractional Kirchhoff-type problems: [Formula: see text] where [Formula: see text] is a constant, [Formula: see text] is a bounded open interval, [Formula: see text] is a continuous potential, the nonlinear term [Formula: see text] has exponential growth of Trudinger–Moser type, [Formula: see text] and [Formula: see text] denotes the standard Gagliardo seminorm of the fractional Sobolev space [Formula: see text]. More precisely, by exploring a minimization argument and the quantitative deformation lemma, we establish the existence of a nodal (or sign-changing) solution and by means of the Mountain Pass Theorem, we get one nonpositive and one nonnegative ground state solution. Moreover, we show that the energy of the nodal solution is strictly larger than twice the ground state level. When we regard [Formula: see text] as a positive parameter, we study the behavior of the nodal solutions as [Formula: see text].

Author(s):  
Ruichang Pei

Abstract The main aim of this paper is to investigate the existence of nontrivial solutions for a class of fractional Kirchhoff-type problems with right-hand side nonlinearity which is subcritical or critical exponential growth (subcritical polynomial growth) at infinity. However, it need not satisfy the Ambrosetti–Rabinowitz (AR) condition. Some existence results of nontrivial solutions are established via Mountain Pass Theorem combined with the fractional Moser–Trudinger inequality.


Author(s):  
Giovanni Molica Bisci ◽  
Vicentiu D. Radulescu ◽  
Raffaella Servadei

2012 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Die Hu ◽  
Xianhua Tang ◽  
Qi Zhang

<p style='text-indent:20px;'>In this paper, we discuss the generalized quasilinear Schrödinger equation with Kirchhoff-type:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1a"> \begin{document}$\left (1\!+\!b\int_{\mathbb{R}^{3}}g^{2}(u)|\nabla u|^{2} dx \right) \left[-\mathrm{div} \left(g^{2}(u)\nabla u\right)\!+\!g(u)g'(u)|\nabla u|^{2}\right] \!+\!V(x)u\! = \!f( u),(\rm P)$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ b&gt;0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ g\in \mathbb{C}^{1}(\mathbb{R},\mathbb{R}^{+}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ V\in \mathbb{C}^{1}(\mathbb{R}^3,\mathbb{R}) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M4">\begin{document}$ f\in \mathbb{C}(\mathbb{R},\mathbb{R}) $\end{document}</tex-math></inline-formula>. Under some "Berestycki-Lions type assumptions" on the nonlinearity <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> which are almost necessary, we prove that problem <inline-formula><tex-math id="M6">\begin{document}$ (\rm P) $\end{document}</tex-math></inline-formula> has a nontrivial solution <inline-formula><tex-math id="M7">\begin{document}$ \bar{u}\in H^{1}(\mathbb{R}^{3}) $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M8">\begin{document}$ \bar{v} = G(\bar{u}) $\end{document}</tex-math></inline-formula> is a ground state solution of the following problem</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1b"> \begin{document}$-\left(1+b\int_{\mathbb{R}^{3}} |\nabla v|^{2} dx \right) \triangle v+V(x)\frac{G^{-1}(v)}{g(G^{-1}(v))} = \frac{f(G^{-1}(v))}{g(G^{-1}(v))},(\rm \bar{P})$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M9">\begin{document}$ G(t): = \int_{0}^{t} g(s) ds $\end{document}</tex-math></inline-formula>. We also give a minimax characterization for the ground state solution <inline-formula><tex-math id="M10">\begin{document}$ \bar{v} $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document