On S-GCD domains

2019 ◽  
Vol 18 (04) ◽  
pp. 1950067 ◽  
Author(s):  
D. D. Anderson ◽  
Ahmed Hamed ◽  
Muhammad Zafrullah

Let [Formula: see text] be a multiplicative set in an integral domain [Formula: see text]. A nonzero ideal [Formula: see text] of [Formula: see text] is said to be [Formula: see text]-[Formula: see text]-principal if there exist an [Formula: see text] and [Formula: see text] such that [Formula: see text]. Call [Formula: see text] an [Formula: see text]-GCD domain if each finitely generated nonzero ideal of [Formula: see text] is [Formula: see text]-[Formula: see text]-principal. This notion was introduced in [A. Hamed and S. Hizem, On the class group and [Formula: see text]-class group of formal power series rings, J. Pure Appl. Algebra 221 (2017) 2869–2879]. One aim of this paper is to characterize [Formula: see text]-GCD domains, giving several equivalent conditions and showing that if [Formula: see text] is an [Formula: see text]-GCD domain then [Formula: see text] is a GCD domain but not conversely. Also we prove that if [Formula: see text] is an [Formula: see text]-GCD [Formula: see text]-Noetherian domain such that every prime [Formula: see text]-ideal disjoint from [Formula: see text] is a [Formula: see text]-ideal, then [Formula: see text] is [Formula: see text]-factorial and we give an example of an [Formula: see text]-GCD [Formula: see text]-Noetherian domain which is not [Formula: see text]-factorial. We also consider polynomial and power series extensions of [Formula: see text]-GCD domains. We call [Formula: see text] a sublocally [Formula: see text]-GCD domain if [Formula: see text] is a [Formula: see text]-GCD domain for every non-unit [Formula: see text] and show, among other things, that a non-quasilocal sublocally [Formula: see text]-GCD domain is a generalized GCD domain (i.e. for all [Formula: see text] is invertible).

2011 ◽  
Vol 31 (1) ◽  
pp. 331-343 ◽  
Author(s):  
Steven T. Dougherty ◽  
Liu Hongwei

1989 ◽  
Vol 32 (3) ◽  
pp. 314-319
Author(s):  
Peter Seibt

AbstractDifferentially simple local noetherian Q -algebras are shown to be always (a certain type of) subrings of formal power series rings. The result is established as an illustration of a general theory of differential filtrations and differential completions.


2020 ◽  
Vol 27 (03) ◽  
pp. 495-508
Author(s):  
Ahmed Maatallah ◽  
Ali Benhissi

Let A be a ring. In this paper we generalize some results introduced by Aliabad and Mohamadian. We give a relation between the z-ideals of A and those of the formal power series rings in an infinite set of indeterminates over A. Consider A[[XΛ]]3 and its subrings A[[XΛ]]1, A[[XΛ]]2, and A[[XΛ]]α, where α is an infinite cardinal number. In fact, a z-ideal of the rings defined above is of the form I + (XΛ)i, where i = 1, 2, 3 or an infinite cardinal number and I is a z-ideal of A. In addition, we prove that the same condition given by Aliabad and Mohamadian can be used to get a relation between the minimal prime ideals of the ring of the formal power series in an infinite set of indeterminates and those of the ring of coefficients. As a natural result, we get a relation between the z°-ideals of the formal power series ring in an infinite set of indeterminates and those of the ring of coefficients.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050003
Author(s):  
Abolfazl Tarizadeh

In this paper, the ring of polynomials is studied in a systematic way through the theory of monoid rings. As a consequence, this study provides canonical approaches in order to find easy and rigorous proofs and methods for many facts on polynomials and formal power series; some of them as sample are treated in this paper. Besides the universal properties of the monoid rings and polynomial rings, a universal property for the formal power series rings is also established.


Sign in / Sign up

Export Citation Format

Share Document