The Schroder-Bernstein problem for dual F-Baer modules

Author(s):  
Derya Keskin Tutuncu
1996 ◽  
Vol 185 (2) ◽  
pp. 420-439 ◽  
Author(s):  
J.Carlos Gutierrez Fernandez
Keyword(s):  

2000 ◽  
Vol 223 (1) ◽  
pp. 109-132 ◽  
Author(s):  
J.Carlos Gutiérrez Fernández

2014 ◽  
Vol 30 (2) ◽  
pp. 225-229
Author(s):  
GABRIELA OLTEANU ◽  

We define Baer-Galois connections between bounded modular lattices. We relate them to lifting lattices and we show that they unify the theories of (relatively) Baer and dual Baer modules.


2016 ◽  
Vol 41 ◽  
pp. 699-704
Author(s):  
Juan A. Aledo ◽  
Rafael M. Rubio

1985 ◽  
Vol 97 (3) ◽  
pp. 491-498 ◽  
Author(s):  
James. E. Brennan

One of the most important concepts in the theory of approximation by analytic functions is that of analytic continuation. In a typical problem, for example, there is generally a region Ω, a Banach space B of functions analytic in Ω and a subfamily ℱ ⊂ B, each member of which is analytic in some larger open set, and one might be asked to decide whether or not ℱ is dense in B. It often happens, however, that either ℱ is dense or the only functions which can be so approximated have a natural analytic continuation across ∂Ω. A similar phenomenon is also known to occur even for approximation on sets without interior. In this article we shall describe a method for proving such theorems which can be applied in a variety of settings and, in particular, to: (1)  the Bernštein problem for weighted polynomial approximation on the real line; (2)  the completeness problem for weighted polynomial approximation on bounded simply connected regions; (3) the Shapiro overconvergence problem for sequences of rational functions with sparse poles; (4) the Akutowicz-Carleson minimum problem for interpolating functions. Although we shall present no new results, the method of proof, which is based on an argument of the author [6], seems sufficiently versatile to warrant exposition.


2011 ◽  
Vol 39 (5) ◽  
pp. 1605-1623 ◽  
Author(s):  
Sh. Asgari ◽  
A. Haghany
Keyword(s):  

2015 ◽  
Vol 22 (spec01) ◽  
pp. 849-870 ◽  
Author(s):  
Sh. Asgari ◽  
A. Haghany

We introduce the notion of t-Rickart modules as a generalization of t-Baer modules. Dual t-Rickart modules are also defined. Both of these are generalizations of continuous modules. Every direct summand of a t-Rickart (resp., dual t-Rickart) module inherits the property. Some equivalent conditions to being t-Rickart (resp., dual t-Rickart) are given. In particular, we show that a module M is t-Rickart (resp., dual t-Rickart) if and only if M is a direct sum of a Z2-torsion module and a nonsingular Rickart (resp., dual Rickart) module. It is proved that for a ring R, every R-module is dual t-Rickart if and only if R is right t-semisimple, while every R-module is t-Rickart if and only if R is right Σ-t-extending. Other types of rings are characterized by certain classes of t-Rickart (resp., dual t-Rickart) modules.


Sign in / Sign up

Export Citation Format

Share Document