modular lattices
Recently Published Documents


TOTAL DOCUMENTS

275
(FIVE YEARS 14)

H-INDEX

18
(FIVE YEARS 1)

2021 ◽  
Vol 83 (1) ◽  
Author(s):  
Christian Herrmann

AbstractWe study the computational complexity of the satisfiability problem and the complement of the equivalence problem for complemented (orthocomplemented) modular lattices L and classes thereof. Concerning a simple L of finite height, $$\mathcal {NP}$$ NP -hardness is shown for both problems. Moreover, both problems are shown to be polynomial-time equivalent to the same feasibility problem over the division ring D whenever L is the subspace lattice of a D-vector space of finite dimension at least 3. Considering the class of all finite dimensional Hilbert spaces, the equivalence problem for the class of subspace ortholattices is shown to be polynomial-time equivalent to that for the class of endomorphism $$*$$ ∗ -rings with pseudo-inversion; moreover, we derive completeness for the complement of the Boolean part of the nondeterministic Blum-Shub-Smale model of real computation without constants. This result extends to the additive category of finite dimensional Hilbert spaces, enriched by adjunction and pseudo-inversion.


2021 ◽  
Vol 82 (4) ◽  
Author(s):  
Sebastián Pardo-Guerra ◽  
Hugo A. Rincón-Mejia ◽  
Manuel G. Zorrilla-Noriega

2021 ◽  
pp. 1-11
Author(s):  
Toma Albu ◽  
Yeliz Kara ◽  
Adnan Tercan
Keyword(s):  

2020 ◽  
pp. 2150011
Author(s):  
Friedrich Wehrung

Anti-elementarity is a strong way of ensuring that a class of structures, in a given first-order language, is not closed under elementary equivalence with respect to any infinitary language of the form [Formula: see text]. We prove that many naturally defined classes are anti-elementary, including the following: the class of all lattices of finitely generated convex [Formula: see text]-subgroups of members of any class of [Formula: see text]-groups containing all Archimedean [Formula: see text]-groups; the class of all semilattices of finitely generated [Formula: see text]-ideals of members of any nontrivial quasivariety of [Formula: see text]-groups; the class of all Stone duals of spectra of MV-algebras — this yields a negative solution to the MV-spectrum Problem; the class of all semilattices of finitely generated two-sided ideals of rings; the class of all semilattices of finitely generated submodules of modules; the class of all monoids encoding the nonstable K0-theory of von Neumann regular rings, respectively, C*-algebras of real rank zero; (assuming arbitrarily large Erdős cardinals) the class of all coordinatizable sectionally complemented modular lattices with a large [Formula: see text]-frame. The main underlying principle is that under quite general conditions, for a functor [Formula: see text], if there exists a noncommutative diagram [Formula: see text] of [Formula: see text], indexed by a common sort of poset called an almost join-semilattice, such that [Formula: see text] is a commutative diagram for every set [Formula: see text], [Formula: see text] for any commutative diagram [Formula: see text] in [Formula: see text], then the range of [Formula: see text] is anti-elementary.


2020 ◽  
Vol 81 (4) ◽  
Author(s):  
Julián Salamanca Téllez

AbstractWe show that there is no distributive law of the free lattice monad over the powerset monad. The proof presented here also works for other classes of lattices such as (bounded) distributive/modular lattices and also for some variants of the powerset monad such as the (nonempty) finite powerset monad.


2020 ◽  
Vol 20 (3) ◽  
pp. 375-390
Author(s):  
Hiroshi Hirai

AbstractA simple lattice-theoretic characterization for affine buildings of type A is obtained. We introduce a class of modular lattices, called uniform modular lattices, and show that uniform modular lattices and affine buildings of type A constitute the same object. This is an affine counterpart of the well-known equivalence between projective geometries (≃ complemented modular lattices) and spherical buildings of type A.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 652 ◽  
Author(s):  
Zacharias Vangelatos ◽  
Andrea Micheletti ◽  
Costas P. Grigoropoulos ◽  
Fernando Fraternali

A bistable response is an innate feature of tensegrity metamaterials, which is a conundrum to attain in other metamaterials, since it ushers unconventional static and dynamical mechanical behaviors. This paper investigates the design, modeling, fabrication and testing of bistable lattices with tensegrity architecture and nanoscale features. First, a method to design bistable lattices tessellating tensegrity units is formulated. The additive manufacturing of these structures is performed through multiphoton lithography, which enables the fabrication of microscale structures with nanoscale features and extremely high resolution. Different modular lattices, comprised of struts with 250 nm minimum radius, are tested under loading-unloading uniaxial compression nanoindentation tests. The compression tests confirmed the activation of the designed bistable twisting mechanism in the examined lattices, combined with a moderate viscoelastic response. The force-displacement plots of the 3D assemblies of bistable tensegrity prisms reveal a softening behavior during the loading from the primary stable configuration and a subsequent snapping event that drives the structure into a secondary stable configuration. The twisting mechanism that characterizes such a transition is preserved after unloading and during repeated loading-unloading cycles. The results of the present study elucidate that fabrication of multistable tensegrity lattices is highly feasible via multiphoton lithography and promulgates the fabrication of multi-cell tensegrity metamaterials with unprecedented static and dynamic responses.


Sign in / Sign up

Export Citation Format

Share Document