On strongly J-Noetherian rings

Author(s):  
Esmaeil Rostami

In this paper, we introduce a class of commutative rings which is a generalization of ZD-rings and rings with Noetherian spectrum. A ring [Formula: see text] is called strongly[Formula: see text]-Noetherian whenever the ring [Formula: see text] is [Formula: see text]-Noetherian for every non-nilpotent [Formula: see text]. We give some characterizations for strongly [Formula: see text]-Noetherian rings and, among the other results, we show that if [Formula: see text] is strongly [Formula: see text]-Noetherian, then [Formula: see text] has Noetherian spectrum, which is a generalization of Theorem 2 in Gilmer and Heinzer [The Laskerian property, power series rings, and Noetherian spectra, Proc. Amer. Math. Soc. 79 (1980) 13–16].

1953 ◽  
Vol 49 (3) ◽  
pp. 386-396 ◽  
Author(s):  
D. G. Northcott

The recent progress of modern algebra in analysing, from the algebraic standpoint, the foundations of algebraic geometry, has been marked by the rapid development of what may be called ‘analytic algebra’. By this we mean the topological theories of Noetherian rings that arise when one uses ideals to define neighbourhoods; this includes, for instance, the theory of power-series rings and of local rings. In the present paper some applications are made of this kind of algebra to some problems connected with the notion of a branch of a variety at a point.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350083 ◽  
Author(s):  
A. ALHEVAZ ◽  
D. KIANI

One of the important properties of commutative rings, proved by McCoy [Remarks on divisors of zero, Amer. Math. Monthly49(5) (1942) 286–295], is that if two nonzero polynomials annihilate each other over a commutative ring then each polynomial has a nonzero annihilator in the base ring. Nielsen [Semi-commutativity and the McCoy condition, J. Algebra298(1) (2006) 134–141] generalizes this property to non-commutative rings. Let M be a monoid and σ be an automorphism of a ring R. For the continuation of McCoy property of non-commutative rings, in this paper, we extend the McCoy's theorem to skew Laurent power series ring R[[x, x-1; σ]] and skew monoid ring R * M over general non-commutative rings. Constructing various examples, we classify how these skew versions of McCoy property behaves under various ring extensions. Moreover, we investigate relations between these properties and other standard ring-theoretic properties such as zip rings and rings with Property (A). As a consequence we extend and unify several known results related to McCoy rings.


CAUCHY ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 129-135
Author(s):  
Ahmad Faisol ◽  
Fitriani Fitriani

Let  M_n (R_1 [[S_1,≤_1,ω_1]]) and M_n (R_2 [[S_2,≤_2,ω_2]]) be a matrix rings over skew generalized power series rings, where R_1,R_2 are commutative rings with an identity element, (S_1,≤_1 ),(S_2,≤_2 ) are strictly ordered monoids, ω_1:S_1→End(R_1 ),〖 ω〗_2:S_2→End(R_2 ) are monoid homomorphisms. In this research, a mapping  τ from M_n (R_1 [[S_1,≤_1,ω_1]]) to M_n (R_2 [[S_2,≤_2,ω_2]]) is defined by using a strictly ordered monoid homomorphism δ:(S_1,≤_1 )→(S_2,≤_2 ), and ring homomorphisms μ:R_1→R_2 and σ:R_1 [[S_1,≤_1,ω_1]]→R_2 [[S_2,≤_2,ω_2]]. Furthermore, it is proved that τ is a ring homomorphism, and also the sufficient conditions for  τ to be a monomorphism, epimorphism, and isomorphism are given.


2009 ◽  
Vol 52 (1) ◽  
pp. 155-159 ◽  
Author(s):  
CHAN YONG HONG ◽  
NAM KYUN KIM ◽  
YANG LEE

AbstractMcCoy proved that for a right ideal A of S = R[x1, . . ., xk] over a ring R, if rS(A) ≠ 0 then rR(A) ≠ 0. We extend the result to the Ore extensions, the skew monoid rings and the skew power series rings over non-commutative rings and so on.


2020 ◽  
Vol 18 (1) ◽  
pp. 1540-1551
Author(s):  
Jung Wook Lim ◽  
Dong Yeol Oh

Abstract Let ({\mathrm{\Gamma}},\le ) be a strictly ordered monoid, and let {{\mathrm{\Gamma}}}^{\ast }\left={\mathrm{\Gamma}}\backslash \{0\} . Let D\subseteq E be an extension of commutative rings with identity, and let I be a nonzero proper ideal of D. Set \begin{array}{l}D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {E}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(0)\in D\right\}\hspace{.5em}\text{and}\\ \hspace{0.2em}D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] := \left\{f\in [\kern-2pt[ {D}^{{\mathrm{\Gamma}},\le }]\kern-2pt] \hspace{0.15em}|\hspace{0.2em}f(\alpha )\in I,\hspace{.5em}\text{for}\hspace{.25em}\text{all}\hspace{.5em}\alpha \in {{\mathrm{\Gamma}}}^{\ast }\right\}.\end{array} In this paper, we give necessary conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively ordered, and sufficient conditions for the rings D+[\kern-2pt[ {E}^{{{\mathrm{\Gamma}}}^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. Moreover, we give a necessary and sufficient condition for the ring D+[\kern-2pt[ {I}^{{\Gamma }^{\ast },\le }]\kern-2pt] to be Noetherian when ({\mathrm{\Gamma}},\le ) is positively totally ordered. As corollaries, we give equivalent conditions for the rings D+({X}_{1},\ldots ,{X}_{n})E{[}{X}_{1},\ldots ,{X}_{n}] and D+({X}_{1},\ldots ,{X}_{n})I{[}{X}_{1},\ldots ,{X}_{n}] to be Noetherian.


2011 ◽  
Vol 31 (1) ◽  
pp. 331-343 ◽  
Author(s):  
Steven T. Dougherty ◽  
Liu Hongwei

Author(s):  
HERVÉ PERDRY ◽  
PETER SCHUSTER

We give a constructive proof showing that every finitely generated polynomial ideal has a Gröbner basis, provided the ring of coefficients is Noetherian in the sense of Richman and Seidenberg. That is, we give a constructive termination proof for a variant of the well-known algorithm for computing the Gröbner basis. In combination with a purely order-theoretic result we have proved in a separate paper, this yields a unified constructive proof of the Hilbert basis theorem for all Noether classes: if a ring belongs to a Noether class, then so does the polynomial ring. Our proof can be seen as a constructive reworking of one of the classical proofs, in the spirit of the partial realisation of Hilbert's programme in algebra put forward by Coquand and Lombardi. The rings under consideration need not be commutative, but are assumed to be coherent and strongly discrete: that is, they admit a membership test for every finitely generated ideal. As a complement to the proof, we provide a prime decomposition for commutative rings possessing the finite-depth property.


2011 ◽  
Vol 334 (1) ◽  
pp. 175-194 ◽  
Author(s):  
K. Alan Loper ◽  
Thomas G. Lucas

Sign in / Sign up

Export Citation Format

Share Document