finite depth
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 104)

H-INDEX

59
(FIVE YEARS 3)

Abstract Boundary layer turbulence in coastal regions differs from that in deep ocean because of bottom interactions. In this paper, we focus on the merging of surface and bottom boundary layers in a finite-depth coastal ocean by numerically solving the wave-averaged equations using a large eddy simulation method. The ocean fluid is driven by combined effects of wind stress, surface wave, and a steady current in the presence of stable vertical stratification. The resulting flow consists of two overlapping boundary layers, i.e. surface and bottom boundary layers, separated by an interior stratification. The overlapping boundary layers evolve through three phases, i.e. a rapid deepening, an oscillatory equilibrium and a prompt merger, separated by two transitions. Before the merger, internal waves are observed in the stratified layer, and they are excited mainly by Langmuir turbulence in the surface boundary layer. These waves induce a clear modulation on the bottom-generated turbulence, facilitating the interaction between the surface and bottom boundary layers. After the merger, the Langmuir circulations originally confined to the surface layer are found to grow in size and extend down to the sea bottom (even though the surface waves do not feel the bottom), reminiscent of the well-organized Langmuir supercells. These full-depth Langmuir circulations promote the vertical mixing and enhance the bottom shear, leading to a significant enhancement of turbulence levels in the vertical column.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 570
Author(s):  
Anargyros S. Mavrakos ◽  
Dimitrios N. Konispoliatis ◽  
Dimitrios G. Ntouras ◽  
George P. Papadakis ◽  
Spyros A. Mavrakos

Moonpool-type floaters were initially proposed for applications such as artificial islands or as protecting barriers around a small area enabling work at the inner surface to be carried out in relatively calm water. In recent years, a growing interest on such structures has been noted, especially in relation to their use as heaving wave energy converters or as oscillating water column (OWC) devices for the extraction of energy from waves. Furthermore, in the offshore marine industry, several types of vessels are frequently constructed with moonpools. The present paper deals with the hydrodynamics of bottomless cylindrical bodies having vertical symmetry axis and floating in a water of finite depth. Two computation methods were implemented and compared: a theoretical approach solving analytically the corresponding diffraction problem around the moonpool floater and a computational fluid dynamics (CFD) solver, which considers the viscous effects near the sharp edges of the body (vortex shedding) as non-negligible. Two different moonpool-type configurations were examined, and some interesting phenomena were discussed concerning the viscous effects and irregularities caused by the resonance of the confined fluid.


Doklady BGUIR ◽  
2022 ◽  
Vol 19 (8) ◽  
pp. 20-25
Author(s):  
A. V. Baran ◽  
V. V. Kudryashov

The two-dimensional circular quantum dot in a double semiconductor heterostructure is simulated by a new axially symmetric smooth potential of finite depth and width. The presence of additional potential parameters in this model allows us to describe the individual properties of different kinds of quantum dots. The influence of the Rashba and Dresselhaus spin-orbit interactions on electron states in quantum dot is investigated. The total Hamiltonian of the problem is written as a sum of unperturbed part and perturbation. First, the exact solution of the unperturbed Schrödinger equation was constructed. Each energy level of the unperturbed Hamiltonian was doubly degenerated. Further, the analytical approximate expression for energy splitting was obtained within the framework of perturbation theory, when the strengths of two spin-orbit interactions are close. The numerical results show the dependence of energy levels on potential parameters.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 612
Author(s):  
Tyler D. Ellison ◽  
Kohtaro Kato ◽  
Zi-Wen Liu ◽  
Timothy H. Hsieh

We introduce the concepts of a symmetry-protected sign problem and symmetry-protected magic to study the complexity of symmetry-protected topological (SPT) phases of matter. In particular, we say a state has a symmetry-protected sign problem or symmetry-protected magic, if finite-depth quantum circuits composed of symmetric gates are unable to transform the state into a non-negative real wave function or stabilizer state, respectively. We prove that states belonging to certain SPT phases have these properties, as a result of their anomalous symmetry action at a boundary. For example, we find that one-dimensional Z2×Z2 SPT states (e.g. cluster state) have a symmetry-protected sign problem, and two-dimensional Z2 SPT states (e.g. Levin-Gu state) have symmetry-protected magic. Furthermore, we comment on the relation between a symmetry-protected sign problem and the computational wire property of one-dimensional SPT states. In an appendix, we also introduce explicit decorated domain wall models of SPT phases, which may be of independent interest.


Author(s):  
Calin I. Martin

AbstractWe present a family of radial solutions (given in Eulerian coordinates) to the three-dimensional Euler equations in a fluid domain with a free surface and having finite depth. The solutions that we find exhibit vertical structure and a non-constant vorticity vector. Moreover, the flows described by these solutions display a density that depends on the depth. While the velocity field and the pressure function corresponding to these solutions are given explicitly through (relatively) simple formulas, the free surface defining function is specified (in general) implicitly by a functional equation which is analysed by functional analytic methods. The elaborate nature of the latter functional equation becomes simpler when the density function has a particular form leading to an explicit formula of the free surface. We subject these solutions to a stability analysis by means of a Wentzel–Kramers–Brillouin (WKB) ansatz.


Author(s):  
C. P. Cummins ◽  
G. T. Scarlett ◽  
C. Windt

AbstractThe Mocean wave energy converter consists of two sections, hinged at a central location, allowing the device to convert energy from the relative pitching motion of the sections. In a simplified form, the scattering problem for the device can be modelled as monochromatic waves incident upon a thin, inclined, surface-piercing plate of length $$L'$$ L ′ in a finite depth $$d'$$ d ′ of water. In this paper, the flow past such a plate is solved using a Boundary Element Method (BEM) and Computational Fluid Dynamics (CFD). While the BEM solution is based on linear potential flow theory, CFD directly solves the Navier–Stokes equations. Problems of this type are known to exhibit near-perfect reflection (indicated by a reflection coefficient $$|R|\approx 1$$ | R | ≈ 1 ) of waves at specific wavenumbers $$k'$$ k ′ . In this paper, we show that the resonant motion of the fluid induces large hydrodynamic forces on the plate. Furthermore, we argue that this low-frequency resonance resembles Helmholtz resonance, and that Mocean’s device being able to tune to these low frequencies does not act like an attenuator. For the case where the water is deep ($$d'>\lambda '/2$$ d ′ > λ ′ / 2 , where $$\lambda '=2\pi /k'$$ λ ′ = 2 π / k ′ ), we find excellent agreement between our simulations and previous semi-analytical studies on the value of the resonant wave periods in deep water. We also find excellent agreement between the excitation forces on the plate computed using the BEM model, analytical results, and CFD for large inclination angles ($$\alpha > 45^\circ $$ α > 45 ∘ ). For $$\alpha \le 15^\circ $$ α ≤ 15 ∘ , both methods show the same trend, but the CFD predicts a significantly smaller peak in the excitation force compared with BEM, which we attribute to non-linear effects such as the non-linear Froude–Krylov force


2021 ◽  
Vol 23 (11) ◽  
pp. 30-55
Author(s):  
Gour Das ◽  
◽  
Rumpa Chakraborty ◽  

The influence of surface tension over an oblique incident waves in presence of thick rectangular barriers present in water of uniform finite depth is discussed here. Three different structures of a bottom-standing submerged barrier, submerged rectangular block not extending down to the bottom and fully submerged block extending down to the bottom with a finite gap are considered. An appropriate multi-term Galekin approximation technique involving ultraspherical Gegenbauer polynomial is employed for solving the integral equations arising in the mathematical analysis. The reflection and transmission coefficients of the progressive waves for two-dimensional time har- monic motion are evaluated by utilizing linearized potential theory. The theoretical result is validated numerically and explained graphically in a number of figures. The present result will almost match analytically and graphically with those results already available in the literature without considering the effect of surface tension. From the graphical representation, it is clearly visible that the amplitude of reflection coefficient decreases with increasing values of surface tension. It is also seen that the presence of surface tension, the change of width, and the height of the thick barriers affect the nature of the reflection coefficients significantly


Sign in / Sign up

Export Citation Format

Share Document