K-theory of n-coherent rings

Author(s):  
Eugenia Ellis ◽  
Rafael Parra

Let [Formula: see text] be a strong [Formula: see text]-coherent ring such that each finitely [Formula: see text]-presented [Formula: see text]-module has finite projective dimension. We consider [Formula: see text] the full subcategory of [Formula: see text]-Mod of finitely [Formula: see text]-presented modules. We prove that [Formula: see text] is an exact category, [Formula: see text] for every [Formula: see text] and we obtain an expression of [Formula: see text].

1996 ◽  
Vol 306 (1) ◽  
pp. 445-457 ◽  
Author(s):  
Dieter Happel ◽  
Luise Unger

2017 ◽  
Vol 16 (10) ◽  
pp. 1750187 ◽  
Author(s):  
Karima Alaoui Ismaili ◽  
David E. Dobbs ◽  
Najib Mahdou

Recently, Xiang and Ouyang defined a (commutative unital) ring [Formula: see text] to be Nil[Formula: see text]-coherent if each finitely generated ideal of [Formula: see text] that is contained in Nil[Formula: see text] is a finitely presented [Formula: see text]-module. We define and study Nil[Formula: see text]-coherent modules and special Nil[Formula: see text]-coherent modules over any ring. These properties are characterized and their basic properties are established. Any coherent ring is a special Nil[Formula: see text]-coherent ring and any special Nil[Formula: see text]-coherent ring is a Nil[Formula: see text]-coherent ring, but neither of these statements has a valid converse. Any reduced ring is a special Nil[Formula: see text]-coherent ring (regardless of whether it is coherent). Several examples of Nil[Formula: see text]-coherent rings that are not special Nil[Formula: see text]-coherent rings are obtained as byproducts of our study of the transfer of the Nil[Formula: see text]-coherent and the special Nil[Formula: see text]-coherent properties to trivial ring extensions and amalgamated algebras.


2019 ◽  
Vol 19 (01) ◽  
pp. 2050007
Author(s):  
Weiqing Li ◽  
Dong Liu

Let [Formula: see text] and [Formula: see text] be arbitrary fixed integers. We prove that there exists a ring [Formula: see text] such that: (1) [Formula: see text] is a right [Formula: see text]-ring; (2) [Formula: see text] is not a right [Formula: see text]-ring for each non-negative integer [Formula: see text]; (3) [Formula: see text] is not a right [Formula: see text]-ring [Formula: see text]for [Formula: see text], for each non-negative integer [Formula: see text]; (4) [Formula: see text] is a right [Formula: see text]-coherent ring; (5) [Formula: see text] is not a right [Formula: see text]-coherent ring. This shows the richness of right [Formula: see text]-rings and right [Formula: see text]-coherent rings, and, in particular, answers affirmatively a problem posed by Costa in [D. L. Costa, Parameterizing families of non-Noetherian rings, Comm. Algebra 22 (1994) 3997–4011.] when the ring in question is non-commutative.


1985 ◽  
Vol 79 (2) ◽  
pp. 253-291 ◽  
Author(s):  
Sankar P. Dutta ◽  
M. Hochster ◽  
J. E. McLaughlin

Sign in / Sign up

Export Citation Format

Share Document