Tail asymptotics of the stationary distribution for M/M-JSQ with k parallel queues (abstract only)

2012 ◽  
Vol 39 (4) ◽  
pp. 28-28
Author(s):  
Masahiro Kobayashi ◽  
Yutaka Sakuma ◽  
Masakiyo Miyazawa
2014 ◽  
Vol 51 (A) ◽  
pp. 249-265
Author(s):  
Sergey Foss ◽  
Masakiyo Miyazawa

We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.


2014 ◽  
Vol 51 (A) ◽  
pp. 249-265 ◽  
Author(s):  
Sergey Foss ◽  
Masakiyo Miyazawa

We consider a two-node fluid network with batch arrivals of random size having a heavy-tailed distribution. We are interested in the tail asymptotics for the stationary distribution of a two-dimensional workload process. Tail asymptotics have been well studied for two-dimensional reflecting processes where jumps have either a bounded or an unbounded light-tailed distribution. However, the presence of heavy tails totally changes these asymptotics. Here we focus on the case of strong stability where both nodes release fluid at sufficiently high speeds to minimise their mutual influence. We show that, as in the one-dimensional case, big jumps provide the main cause for workloads to become large, but now they can have multidimensional features. We first find the weak tail asymptotics of an arbitrary directional marginal of the stationary distribution at Poisson arrival epochs. In this analysis, decomposition formulae for the stationary distribution play a key role. Then we employ sample-path arguments to find the exact tail asymptotics of a directional marginal at renewal arrival epochs assuming one-dimensional batch arrivals.


2014 ◽  
Vol 46 (02) ◽  
pp. 365-399 ◽  
Author(s):  
Masahiro Kobayashi ◽  
Masakiyo Miyazawa

We consider a two-dimensional reflecting random walk on the nonnegative integer quadrant. This random walk is assumed to be skip free in the direction to the boundary of the quadrant, but may have unbounded jumps in the opposite direction, which are referred to as upward jumps. We are interested in the tail asymptotic behavior of its stationary distribution, provided it exists. Assuming that the upward jump size distributions have light tails, we find the rough tail asymptotics of the marginal stationary distributions in all directions. This generalizes the corresponding results for the skip-free reflecting random walk in Miyazawa (2009). We exemplify these results for a two-node queueing network with exogenous batch arrivals.


2014 ◽  
Vol 46 (2) ◽  
pp. 365-399 ◽  
Author(s):  
Masahiro Kobayashi ◽  
Masakiyo Miyazawa

We consider a two-dimensional reflecting random walk on the nonnegative integer quadrant. This random walk is assumed to be skip free in the direction to the boundary of the quadrant, but may have unbounded jumps in the opposite direction, which are referred to as upward jumps. We are interested in the tail asymptotic behavior of its stationary distribution, provided it exists. Assuming that the upward jump size distributions have light tails, we find the rough tail asymptotics of the marginal stationary distributions in all directions. This generalizes the corresponding results for the skip-free reflecting random walk in Miyazawa (2009). We exemplify these results for a two-node queueing network with exogenous batch arrivals.


Author(s):  
Hongshuai Dai ◽  
Donald A. Dawson ◽  
Yiqiang Q. Zhao

In this paper, we consider a three-dimensional Brownian-driven tandem queue with intermediate inputs, which corresponds to a three-dimensional semimartingale reflecting Brownian motion whose reflection matrix is triangular. For this three-node tandem queue, no closed form formula is known, not only for its stationary distribution but also for the corresponding transform. We are interested in exact tail asymptotics for stationary distributions. By generalizing the kernel method, and using extreme value theory and copula, we obtain exact tail asymptotics for the marginal stationary distribution of the buffer content in the third buffer and for the joint stationary distribution.


Sign in / Sign up

Export Citation Format

Share Document