joint stationary distribution
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Hongshuai Dai ◽  
Donald A. Dawson ◽  
Yiqiang Q. Zhao

In this paper, we consider a three-dimensional Brownian-driven tandem queue with intermediate inputs, which corresponds to a three-dimensional semimartingale reflecting Brownian motion whose reflection matrix is triangular. For this three-node tandem queue, no closed form formula is known, not only for its stationary distribution but also for the corresponding transform. We are interested in exact tail asymptotics for stationary distributions. By generalizing the kernel method, and using extreme value theory and copula, we obtain exact tail asymptotics for the marginal stationary distribution of the buffer content in the third buffer and for the joint stationary distribution.


2016 ◽  
Vol 48 (2) ◽  
pp. 315-331 ◽  
Author(s):  
Ruslan Krenzler ◽  
Hans Daduna ◽  
Sonja Otten

Abstract We investigate queueing networks in a random environment. The impact of the evolving environment on the network is by changing service capacities (upgrading and/or degrading, breakdown, repair) when the environment changes its state. On the other side, customers departing from the network may enforce the environment to jump immediately. This means that the environment is nonautonomous and therefore results in a rather complex two-way interaction, especially if the environment is not itself Markov. To react to the changes of the capacities we implement randomised versions of the well-known deterministic rerouteing schemes 'skipping' (jump-over protocol) and `reflection' (repeated service, random direction). Our main result is an explicit expression for the joint stationary distribution of the queue-lengths vector and the environment which is of product form.


2016 ◽  
Vol 2016 ◽  
pp. 1-23 ◽  
Author(s):  
Kazuki Kajiwara ◽  
Tuan Phung-Duc

This paper considers a retrial queueing model where a group of guard channels is reserved for priority and retrial customers. Priority and normal customers arrive at the system according to two distinct Poisson processes. Priority customers are accepted if there is an idle channel upon arrival while normal customers are accepted if and only if the number of idle channels is larger than the number of guard channels. Blocked customers (priority or normal) join a virtual orbit and repeat their attempts in a later time. Customers from the orbit (retrial customers) are accepted if there is an idle channel available upon arrival. We formulate the queueing system using a level dependent quasi-birth-and-death (QBD) process. We obtain a Taylor series expansion for the nonzero elements of the rate matrices of the level dependent QBD process. Using the expansion results, we obtain an asymptotic upper bound for the joint stationary distribution of the number of busy channels and that of customers in the orbit. Furthermore, we develop an efficient numerical algorithm to calculate the joint stationary distribution.


2015 ◽  
Author(s):  
Alexander V. Pechinkin ◽  
Rostislav R. Razumchik ◽  
Ilaria Caraccio

Sign in / Sign up

Export Citation Format

Share Document