scholarly journals Equivalences for Linearizations of Matrix Polynomials

Author(s):  
Robert M. Corless ◽  
Leili Rafiee Sevyeri ◽  
B David Saunders
Keyword(s):  
2021 ◽  
Vol 71 (2) ◽  
pp. 301-316
Author(s):  
Reshma Sanjhira

Abstract We propose a matrix analogue of a general inverse series relation with an objective to introduce the generalized Humbert matrix polynomial, Wilson matrix polynomial, and the Rach matrix polynomial together with their inverse series representations. The matrix polynomials of Kiney, Pincherle, Gegenbauer, Hahn, Meixner-Pollaczek etc. occur as the special cases. It is also shown that the general inverse matrix pair provides the extension to several inverse pairs due to John Riordan [An Introduction to Combinatorial Identities, Wiley, 1968].


1990 ◽  
Vol 33 (3) ◽  
pp. 337-366 ◽  
Author(s):  
Harry Dym ◽  
Nicholas Young

Let N(λ) be a square matrix polynomial, and suppose det N is a polynomial of degree d. Subject to a certain non-singularity condition we construct a d by d Hermitian matrix whose signature determines the numbers of zeros of N inside and outside the unit circle. The result generalises a well known theorem of Schur and Cohn for scalar polynomials. The Hermitian “test matrix” is obtained as the inverse of the Gram matrix of a natural basis in a certain Krein space of rational vector functions associated with N. More complete results in a somewhat different formulation have been obtained by Lerer and Tismenetsky by other methods.


Sign in / Sign up

Export Citation Format

Share Document