Alpha 1-adrenergic constriction limits coronary flow and cardiac function in running dogs

1986 ◽  
Vol 250 (6) ◽  
pp. H1117-H1126 ◽  
Author(s):  
P. A. Gwirtz ◽  
S. P. Overn ◽  
H. J. Mass ◽  
C. E. Jones

Modulation of coronary blood flow and cardiac function by alpha 1-adrenergic receptors was examined in dogs during strenuous exercise. Fifteen dogs were chronically instrumented to measure left circumflex blood flow, heart rate, regional left ventricular function (systolic shortening, and rate of shortening), and global left ventricular function (left ventricular pressure, and dP/dt). The specific postsynaptic alpha 1-receptor blocker prazosin (0.5 mg) and nonselective alpha-receptor blocker phentolamine (1.0 mg) were injected through an indwelling circumflex artery catheter to produce local adrenergic blockade of the posterior left ventricular region during exercise. Exercise significantly increased heart rate, left ventricular systolic pressure, dP/dt, segment shortening and rate of shortening, and coronary blood flow. Both prazosin and phentolamine caused similar additional increases in dP/dt by 21 +/- 4%, in rate of shortening in the posterior region by 37 +/- 6%, and in myocardial O2 consumption by 26 +/- 11%, which were associated with a 21 +/- 3% increase in coronary flow during exercise but no change in O2 extraction. Similar results were obtained when dogs were beta-blocked with either atenolol (1.0 mg ic) or propranolol (1.0 mg ic) prior to exercise. These data suggest that an alpha 1-vasoconstriction modulates O2 delivery to myocardial tissue and limits both coronary vasodilation and cardiac function during exercise.

Circulation ◽  
1995 ◽  
Vol 92 (9) ◽  
pp. 298-303 ◽  
Author(s):  
Takuya Miura ◽  
Takeshi Hiramatsu ◽  
Joseph M. Forbess ◽  
John E. Mayer

1982 ◽  
Vol 242 (5) ◽  
pp. H805-H809 ◽  
Author(s):  
G. R. Heyndrickx ◽  
P. Muylaert ◽  
J. L. Pannier

alpha-Adrenergic control of the oxygen delivery to the myocardium during exercise was investigated in eight conscious dogs instrumented for chronic measurements of coronary blood flow, left ventricular (LV) pressure, aortic blood pressure, and heart rate and sampling of arterial and coronary sinus blood. After alpha-adrenergic receptor blockade a standard exercise load elicited a significantly greater increase in heart rate, rate of change of LV pressure (LV dP/dt), LV dP/dt/P, and coronary blood flow than was elicited in the unblocked state. In contrast to the response pattern during control exercise, there was no significant change in coronary sinus oxygen tension (PO2), myocardial arteriovenous oxygen difference, and myocardial oxygen delivery-to-oxygen consumption ratio. It is concluded that the normal relationship between myocardial oxygen supply and oxygen demand is modified during exercise after alpha-adrenergic blockade, whereby oxygen delivery is better matched to oxygen consumption. These results indicate that the increase in coronary blood flow and oxygen delivery to the myocardium during normal exercise is limited by alpha-adrenergic vasoconstriction.


1980 ◽  
Vol 49 (1) ◽  
pp. 28-33 ◽  
Author(s):  
G. R. Heyndrickx ◽  
J. L. Pannier ◽  
P. Muylaert ◽  
C. Mabilde ◽  
I. Leusen

The effects of beta-adrenergic blockade upon myocardial blood flow and oxygen balance during exercise were evaluated in eight conscious dogs, instrumented for chronic measurements of coronary blood flow, left ventricular pressure, aortic blood pressure, heart rate, and sampling of arterial and coronary sinus venous blood. The administration of propranolol (1.5 mg/kg iv) produced a decrease in heart rate, peak left ventricular (LV) dP/dt, LV (dP/dt/P, and an increase in LV end-diastolic pressure during exercise. Mean coronary blood flow and myocardial oxygen consumption were lower after propranolol than at the same exercise intensity in control conditions. The oxygen delivery-to-oxygen consumption ratio and the coronary sinus oxygen content were also significantly lower. It is concluded that the relationship between myocardial oxygen supply and demand is modified during exercise after propranolol, so that a given level of myocardial oxygen consumption is achieved with a proportionally lower myocardial blood flow and a higher oxygen extraction.


1985 ◽  
Vol 249 (6) ◽  
pp. H1070-H1077 ◽  
Author(s):  
I. Y. Liang ◽  
C. E. Jones

Coronary hypoperfusion was elicited in alpha-chloralose-anesthetized open-chest dogs by reducing left coronary perfusion pressure to 50 mmHg. Left coronary blood flow, as well as left ventricular oxygen extraction, oxygen consumption, and contractile force were measured. The reduction in perfusion pressure caused significant reductions in coronary flow, oxygen consumption, and peak reactive hyperemic flow. During hypoperfusion in 11 dogs, intracoronary infusion of the specific alpha 1-adrenergic antagonist prazosin (0.1 mg/min) increased coronary flow and oxygen consumption by 22 and 16%, respectively. Peak increases were observed after 6–8 min of prazosin infusion (0.6–0.8 mg prazosin), and both increases were statistically significant (P less than 0.05). In seven additional dogs, beta-adrenergic blockade with propranolol (1.0 mg ic) did not significantly affect the actions of prazosin. In five additional dogs, the specific alpha 2-adrenergic antagonist yohimbine (1.3 mg ic) in the presence of propranolol (1.0 mg ic) did not affect coronary flow or oxygen consumption during coronary hypoperfusion. Those results suggest that an alpha 1- but not an alpha 2-adrenergic constrictor tone was operative in the left coronary circulation under the conditions of these experiments.


1999 ◽  
Vol 5 (3) ◽  
pp. 66
Author(s):  
Osamu Sasaki ◽  
Mareomi Hamada ◽  
Yuji Shigematsu ◽  
Yuji Hara ◽  
Makoto Suzuki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document