scholarly journals Acute systemic hypoxia activates hypothalamic paraventricular nucleus-projecting catecholaminergic neurons in the caudal ventrolateral medulla

2013 ◽  
Vol 305 (10) ◽  
pp. R1112-R1123 ◽  
Author(s):  
T. Luise King ◽  
David D. Kline ◽  
Brian C. Ruyle ◽  
Cheryl M. Heesch ◽  
Eileen M. Hasser

Hypoxia activates catecholamine neurons in the caudal ventrolateral medulla (CVLM). The hypothalamic paraventricular nucleus (PVN) modulates arterial chemoreflex responses and receives catecholaminergic projections from the CVLM, but it is not known whether the CVLM-PVN projection is activated by chemoreflex stimulation. We hypothesized that acute hypoxia (AH) activates PVN-projecting catecholaminergic neurons in the CVLM. Fluoro-Gold (2%, 60–90 nl) was microinjected into the PVN of rats to retrogradely label CVLM neurons. After recovery, conscious rats underwent 3 h of normoxia (21% O2, n = 4) or AH (12, 10, or 8% O2; n = 5 each group). We used Fos immunoreactivity as an index of CVLM neuronal activation and tyrosine hydroxylase (TH) immunoreactivity to identify catecholaminergic neurons. Positively labeled neurons were counted in six caudal-rostral sections containing CVLM. Hypoxia progressively increased the number of Fos-immunoreactive CVLM cells (21%, 19 ± 6; 12%, 49 ± 2; 10%, 117 ± 8; 8%, 179 ± 7; P < 0.001). Catecholaminergic cells colabeled with Fos immunoreactivity in the CVLM were observed following 12% O2, and further increases in hypoxia severity caused markedly more activation. PVN-projecting CVLM cells were activated following more severe hypoxia (10% and 8% O2). A large proportion (89 ± 3%) of all activated PVN-projecting CVLM neurons were catecholaminergic, regardless of hypoxia intensity. Data suggest that catecholaminergic, PVN-projecting CVLM neurons are particularly hypoxia-sensitive, and these neurons may be important in the cardiorespiratory and/or neuroendocrine responses elicited by the chemoreflex.

2015 ◽  
Vol 309 (7) ◽  
pp. R721-R731 ◽  
Author(s):  
T. Luise King ◽  
Brian C. Ruyle ◽  
David D. Kline ◽  
Cheryl M. Heesch ◽  
Eileen M. Hasser

Brainstem catecholamine neurons modulate sensory information and participate in control of cardiorespiratory function. These neurons have multiple projections, including to the paraventricular nucleus (PVN), which contributes to cardiorespiratory and neuroendocrine responses to hypoxia. We have shown that PVN-projecting catecholaminergic neurons are activated by hypoxia, but the function of these neurons is not known. To test the hypothesis that PVN-projecting catecholamine neurons participate in responses to respiratory challenges, we injected IgG saporin (control; n = 6) or anti-dopamine β-hydroxylase saporin (DSAP; n = 6) into the PVN to retrogradely lesion catecholamine neurons projecting to the PVN. After 2 wk, respiratory measurements (plethysmography) were made in awake rats during normoxia, increasing intensities of hypoxia (12, 10, and 8% O2) and hypercapnia (5% CO2-95% O2). DSAP decreased the number of tyrosine hydroxylase-immunoreactive terminals in PVN and cells counted in ventrolateral medulla (VLM; −37%) and nucleus tractus solitarii (nTS; −36%). DSAP produced a small but significant decrease in respiratory rate at baseline (during normoxia) and at all intensities of hypoxia. Tidal volume and minute ventilation (VE) index also were impaired at higher hypoxic intensities (10-8% O2; e.g., VE at 8% O2: IgG = 181 ± 22, DSAP = 91 ± 4 arbitrary units). Depressed ventilation in DSAP rats was associated with significantly lower arterial O2 saturation at all hypoxic intensities. PVN DSAP also reduced ventilatory responses to 5% CO2 (VE: IgG = 176 ± 21 and DSAP = 84 ± 5 arbitrary units). Data indicate that catecholamine neurons projecting to the PVN are important for peripheral and central chemoreflex respiratory responses and for maintenance of arterial oxygen levels during hypoxic stimuli.


2017 ◽  
Vol 312 (6) ◽  
pp. R982-R995 ◽  
Author(s):  
K. Max Coldren ◽  
De-Pei Li ◽  
David D. Kline ◽  
Eileen M. Hasser ◽  
Cheryl M. Heesch

Hypoxia results in decreased arterial Po2, arterial chemoreflex activation, and compensatory increases in breathing, sympathetic outflow, and neuroendocrine secretions, including increased secretion of AVP, corticotropin-releasing hormone (CRH), adrenocorticotropin hormone (ACTH), and corticosterone. In addition to a brain stem pathway, including the nucleus tractus solitarius (nTS) and the rostral ventrolateral medulla (RVLM), medullary pathways to the paraventricular nucleus of the hypothalamus (PVN) contribute to chemoreflex responses. Experiments evaluated activation of specific cell phenotypes within the PVN following an acute hypoxic stimulus (AH; 2 h, 10% O2) in conscious rats. Retrograde tracers (from spinal cord and RVLM) labeled presympathetic (PreS) neurons, and immunohistochemistry identified AVP- and CRH-immunoreactive (IR) cells. c-Fos-IR was an index of neuronal activation. Hypoxia activated AVP-IR (~6%) and CRH-IR (~15%) cells, but not PreS cells in the PVN, suggesting that sympathoexcitation during moderate AH is mediated mainly by a pathway that does not include PreS neurons in the PVN. Approximately 14 to 17% of all PVN cell phenotypes examined expressed neuronal nitric oxide synthase (nNOS-IR). AH activated only nNOS-negative AVP-IR neurons. In contrast ~23% of activated CRH-IR neurons in the PVN contained nNOS. In the median eminence, CRH-IR terminals were closely opposed to tanycyte processes and end-feet (vimentin-IR) in the external zone, where vascular NO participates in tanycyte retraction to facilitate neuropeptide secretion into the pituitary portal circulation. Results are consistent with an inhibitory role of NO on AVP and PreS neurons in the PVN and an excitatory role of NO on CRH secretion in the PVN and median eminence.


Sign in / Sign up

Export Citation Format

Share Document