scholarly journals Effects of Ih and TASK-like shunting current on dendritic impedance in layer 5 pyramidal-tract neurons

2021 ◽  
Vol 125 (4) ◽  
pp. 1501-1516 ◽  
Author(s):  
Craig Kelley ◽  
Salvador Dura-Bernal ◽  
Samuel A. Neymotin ◽  
Srdjan D. Antic ◽  
Nicholas T. Carnevale ◽  
...  

We simulated chirp current stimulation in the apical dendrites of 5 biophysically detailed multicompartment models of neocortical pyramidal tract neurons and found that a combination of HCN channels and TASK-like channels produced the best fit to experimental measurements of dendritic impedance. We then explored how HCN and TASK-like channels can shape the dendritic impedance as well as the voltage response to synaptic currents.

2021 ◽  
Author(s):  
Craig Kelley ◽  
Salvador Dura-Bernal ◽  
Samuel A Neymotin ◽  
Srdjan D Antic ◽  
Nicholas T Carnevale ◽  
...  

Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We therefore investigated how well several biophysically-detailed multi-compartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates HCN channels and a shunting current, like that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel activity in this model was dependent on local peak HCN channel conductance (Ih). We found that while this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of Ih and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.


2019 ◽  
Author(s):  
A Kraskov ◽  
D Soteropoulos ◽  
I Glover ◽  
RN Lemon ◽  
SN Baker

SummaryAnatomical studies report a large proportion of fine myelinated fibres in the primate pyramidal tract (PT), while very few pyramidal tract neurons (PTNs) with slow conduction velocities (CV) (< ∼10 m/s) are reported electrophysiologically. This discrepancy might reflect recording bias towards fast PTNs or prevention of antidromic invasion by recurrent inhibition of slow PTNs from faster axons. We investigated these factors in recordings made with a polyprobe (32 closely-spaced contacts) from motor cortex of anaesthetised rats (n=2) and macaques (n=3), concentrating our search on PTNs with long antidromic latencies. We identified 21 rat PTNs with antidromic latencies > 2.6 ms and estimated CV 3-8 m/s, and 67 macaque PTNs (> 3.9ms, CV 6-12 m/s). Spikes of most slow PTNs were small and present on only some recording contacts, while spikes from simultaneously recorded fast-conducting PTNs were large and appeared on all contacts. Antidromic thresholds were similar for fast and slow PTNS, while spike duration was considerably longer in slow PTNs. Most slow PTNs showed no signs of failure to respond antidromically. A number of tests, including intracortical microinjection of bicuculline (GABAA antagonist), failed to provide any evidence that recurrent inhibition prevented antidromic invasion of slow PTNs. Our results suggest that recording bias is the main reason why previous studies were dominated by fast PTNs.


1979 ◽  
Vol 34 (1) ◽  
Author(s):  
H. Asanuma ◽  
P. Zarzecki ◽  
E. Jankowska ◽  
T. Hongo ◽  
S. Marcus

Sign in / Sign up

Export Citation Format

Share Document