task channels
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Craig Kelley ◽  
Salvador Dura-Bernal ◽  
Samuel A Neymotin ◽  
Srdjan D Antic ◽  
Nicholas T Carnevale ◽  
...  

Pyramidal neurons in neocortex have complex input-output relationships that depend on their morphologies, ion channel distributions, and the nature of their inputs, but which cannot be replicated by simple integrate-and-fire models. The impedance properties of their dendritic arbors, such as resonance and phase shift, shape neuronal responses to synaptic inputs and provide intraneuronal functional maps reflecting their intrinsic dynamics and excitability. Experimental studies of dendritic impedance have shown that neocortical pyramidal tract neurons exhibit distance-dependent changes in resonance and impedance phase with respect to the soma. We therefore investigated how well several biophysically-detailed multi-compartment models of neocortical layer 5 pyramidal tract neurons reproduce the location-dependent impedance profiles observed experimentally. Each model tested here exhibited location-dependent impedance profiles, but most captured either the observed impedance amplitude or phase, not both. The only model that captured features from both incorporates HCN channels and a shunting current, like that produced by Twik-related acid-sensitive K+ (TASK) channels. TASK-like channel activity in this model was dependent on local peak HCN channel conductance (Ih). We found that while this shunting current alone is insufficient to produce resonance or realistic phase response, it modulates all features of dendritic impedance, including resonance frequencies, resonance strength, synchronous frequencies, and total inductive phase. We also explored how the interaction of Ih and a TASK-like shunting current shape synaptic potentials and produce degeneracy in dendritic impedance profiles, wherein different combinations of Ih and shunting current can produce the same impedance profile.


2020 ◽  
Vol 133 (5) ◽  
pp. 1046-1059
Author(s):  
Jaideep J. Pandit ◽  
Nicky Huskens ◽  
Peadar B. O’Donohoe ◽  
Philip J. Turner ◽  
Keith J. Buckler

Background The degree to which different volatile anesthetics depress carotid body hypoxic response relates to their ability to activate TASK potassium channels. Most commonly, volatile anesthetic pairs act additively at their molecular targets. We examined whether this applied to carotid body TASK channels. Methods We studied halothane and isoflurane effects on hypoxia-evoked rise in intracellular calcium (Ca2+i, using the indicator Indo-1) in isolated neonatal rat glomus cells, and TASK single-channel activity (patch clamping) in native glomus cells and HEK293 cell line cells transiently expressing TASK-1. Results Halothane (5%) depressed glomus cell Ca2+i hypoxic response (mean ± SD, 94 ± 4% depression; P < 0.001 vs. control). Isoflurane (5%) had a less pronounced effect (53 ± 10% depression; P < 0.001 vs. halothane). A mix of 3% isoflurane/1.5% halothane depressed cell Ca2+i response (51 ± 17% depression) to a lesser degree than 1.5% halothane alone (79 ± 15%; P = 0.001), but similar to 3% isoflurane alone (44 ± 22%; P = 0.224), indicating subadditivity. Halothane and isoflurane increased glomus cell TASK-1/TASK-3 activity, but mixes had a lesser effect than that seen with halothane alone: 4% halothane/4% isoflurane yielded channel open probabilities 127 ± 55% above control, versus 226 ± 12% for 4% halothane alone (P = 0.009). Finally, in HEK293 cell line cells, progressively adding isoflurane (1.5 to 5%) to halothane (2.5%) reduced TASK-1 channel activity from 120 ± 38% above control, to 88 ± 48% (P = 0.034). Conclusions In all three experimental models, the effects of isoflurane and halothane combinations were quantitatively consistent with the modeling of weak and strong agonists competing at a common receptor on the TASK channel. Editor’s Perspective What We Already Know about This Topic What This Article Tells Us That Is New


2020 ◽  
Vol 472 (7) ◽  
pp. 911-922 ◽  
Author(s):  
Masumi Inoue ◽  
Hidetada Matsuoka ◽  
Keita Harada ◽  
Go Mugishima ◽  
Masaki Kameyama
Keyword(s):  

Nature ◽  
2020 ◽  
Vol 582 (7812) ◽  
pp. 443-447 ◽  
Author(s):  
Karin E. J. Rödström ◽  
Aytuğ K. Kiper ◽  
Wei Zhang ◽  
Susanne Rinné ◽  
Ashley C. W. Pike ◽  
...  
Keyword(s):  

2020 ◽  
Vol 318 (3) ◽  
pp. H566-H580 ◽  
Author(s):  
Wei Duan ◽  
Jonné Hicks ◽  
Michael A. Makara ◽  
Olga Ilkayeva ◽  
Dennis M. Abraham

Tandem pore domain acid-sensitive K+ (TASK) channels are present in cardiac tissue; however, their contribution to cardiac pathophysiology is not well understood. Here, we investigate the role of TASK-1 and TASK-3 in the pathogenesis of cardiac dysfunction using both human tissue and mouse models of genetic TASK channel loss of function. Compared with normal human cardiac tissue, TASK-1 gene expression is reduced in association with either cardiac hypertrophy alone or combined cardiac hypertrophy and heart failure. In a pressure overload cardiomyopathy model, TASK-1 global knockout (TASK-1 KO) mice have both reduced cardiac hypertrophy and preserved cardiac function compared with wild-type mice. In contrast to the TASK-1 KO mouse pressure overload response, TASK-3 global knockout (TASK-3 KO) mice develop cardiac hypertrophy and a delayed onset of cardiac dysfunction compared with wild-type mice. The cardioprotective effects observed in TASK-1 KO mice are associated with pressure overload-induced augmentation of AKT phosphorylation and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression, with consequent augmentation of cardiac energetics and fatty acid oxidation. The protective effects of TASK-1 loss of function are associated with an enhancement of physiologic hypertrophic signaling and preserved metabolic functions. These findings may provide a rationale for TASK-1 channel inhibition in the treatment of cardiac dysfunction. NEW & NOTEWORTHY The role of tandem pore domain acid-sensitive K+ (TASK) channels in cardiac function is not well understood. This study demonstrates that TASK channel gene expression is associated with the onset of human cardiac hypertrophy and heart failure. TASK-1 and TASK-3 strongly affect the development of pressure overload cardiomyopathies in genetic models of TASK-1 and TASK-3 loss of function. The effects of TASK-1 loss of function were associated with enhanced AKT phosphorylation and expression of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) transcription factor. These data suggest that TASK channels influence the development of cardiac hypertrophy and dysfunction in response to injury.


2019 ◽  
Author(s):  
Karin E. J. Rödström ◽  
Aytuğ K. Kiper ◽  
Wei Zhang ◽  
Susanne Rinné ◽  
Ashley C. W. Pike ◽  
...  

TASK channels are unusual members of the two-pore domain potassium (K2P) channel family, with unique and unexplained physiological and pharmacological characteristics. TASKs are found in neurons1,2, cardiomyocytes3–5 and vascular smooth muscle cells6 where they are involved in regulation of heart rate7, pulmonary artery tone6,8, sleep/wake cycles9 and responses to volatile anaesthetics9–12. K2P channels regulate the resting membrane potential, providing background K+ currents controlled by numerous physiological stimuli13,14. Unlike other K2P channels, TASK channels have the capacity to bind inhibitors with high affinity, exceptional selectivity and very slow compound washout rates. These characteristics make the TASK channels some of the the most easily druggable potassium channels, and indeed TASK-1 inhibitors are currently in clinical trials for obstructive sleep apnea (OSA) and atrial fibrillation (Afib)15 (The DOCTOS and SANDMAN Trials). Generally, potassium channels have an intramembrane vestibule with a selectivity filter above and a gate with four parallel helices below. However, K2P channels studied to date all lack a lower gate. Here we present the structure of TASK-1, revealing a unique lower gate created by interaction of the two crossed C-terminal M4 transmembrane helices at the vestibule entrance, which we designate as an ‟X-gate”. This structure is formed by six residues (V243LRFMT248) that are essential for responses to volatile anaesthetics11, neuro-transmitters16 and G-protein coupled receptors16. Interestingly, mutations within the X-gate and surrounding regions drastically affect both open probability and activation by anaesthetics. Structures of TASK-1 with two novel, high-affinity blockers, shows both inhibitors bound below the selectivity filter, trapped in the vestibule by the X-gate, thus explaining their exceptionally low wash-out rates. Thus, the presence of the X-gate in TASK channels explains many aspects of their unusual physiological and pharmacological behaviour, which is invaluable for future development and optimization of TASK modulators for treatment of heart, lung and sleep disorders.


2019 ◽  
Vol 62 (22) ◽  
pp. 10044-10058 ◽  
Author(s):  
Mauricio Bedoya ◽  
Susanne Rinné ◽  
Aytug K. Kiper ◽  
Niels Decher ◽  
Wendy González ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document