scholarly journals Subtype-dependent postnatal development of direction- and orientation-selective retinal ganglion cells in mice

2014 ◽  
Vol 112 (9) ◽  
pp. 2092-2101 ◽  
Author(s):  
Hui Chen ◽  
Xiaorong Liu ◽  
Ning Tian

The direction-selective ganglion cells (DSGCs) and orientation-selective ganglion cells (OSGCs) encode the directional and the orientational information of a moving object, respectively. It is unclear how DSGCs and OSGCs mature in the mouse retina during postnatal development. Here we investigated the development of DSGCs and OSGCs after eye-opening. We show that 1) DSGCs and OSGCs are present at postnatal day 12 (P12), just before eye-opening; 2) the fractions of both DSGCs and OSGCs increase from P12 to P30; 3) the development of DSGCs and OSGCs is subtype dependent; and 4) direction and orientation selectivity are two separate features of retinal ganglion cells (RGCs) in the mouse retina. We classified RGCs into different functional subtypes based on their light response properties. Compared with P12, the direction and orientation selectivity of ON-OFF RGCs but not ON RGCs became stronger at P30. The tuning width of DSGCs for both ON and ON-OFF subtypes decreased with age. For OSGCs, we divided them into non-direction-selective (non-DS) OSGCs and direction-selective OSGCs (DS&OSGCs). For DS&OSGCs, we found that there was no correlation between the direction and orientation selectivity, and that the tuning width of both ON and ON-OFF subtypes remained unchanged with age. For non-DS OSGCs, the tuning width of ON but not ON-OFF subtype decreased with development. These findings provide a foundation to reveal the molecular and synaptic mechanisms underlying the development of the direction and orientation selectivity in the retina.

2010 ◽  
Vol 103 (4) ◽  
pp. 1856-1864 ◽  
Author(s):  
Anastacia Anishchenko ◽  
Martin Greschner ◽  
Justin Elstrott ◽  
Alexander Sher ◽  
Alan M. Litke ◽  
...  

A characteristic feature of adult retina is mosaic organization: a spatial arrangement of cells of each morphological and functional type that produces uniform sampling of visual space. How the mosaics of visual receptive fields emerge in the retina during development is not fully understood. Here we use a large-scale multielectrode array to determine the mosaic organization of retinal ganglion cells (RGCs) in rats around the time of eye opening and in the adult. At the time of eye opening, we were able to reliably distinguish two types of ON RGCs and two types of OFF RGCs in rat retina based on their light response and intrinsic firing properties. Although the light responses of individual cells were not yet mature at this age, each of the identified functional RGC types formed a receptive field mosaic, where the spacing of the receptive field centers and the overlap of the receptive field extents were similar to those observed in the retinas of adult rats. These findings suggest that, although the light response properties of RGCs may need vision to reach full maturity, extensive visual experience is not required for individual RGC types to form a regular sensory map of visual space.


2004 ◽  
Vol 478 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Erin L. Hawkes ◽  
Anne Marie R. Krueger-Naug ◽  
Philip E.B. Nickerson ◽  
Tanya L. Myers ◽  
R. William Currie ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Ashley M. Chen ◽  
Shaghauyegh S. Azar ◽  
Alexander Harris ◽  
Nicholas C. Brecha ◽  
Luis Pérez de Sevilla Müller

Manipulation of the phosphatase and tensin homolog (PTEN) pathway has been suggested as a therapeutic approach to treat or prevent vision loss due to retinal disease. In this study, we investigated the effects of deleting one copy of Pten in a well-characterized class of retinal ganglion cells called α-ganglion cells in the mouse retina. In Pten+/– retinas, α-ganglion cells did not exhibit major changes in their dendritic structure, although most cells developed a few, unusual loop-forming dendrites. By contrast, α-ganglion cells exhibited a significant decrease in heterologous and homologous gap junction mediated cell coupling with other retinal ganglion and amacrine cells. Additionally, the majority of OFF α-ganglion cells (12/18 cells) formed novel coupling to displaced amacrine cells. The number of connexin36 puncta, the predominant connexin that mediates gap junction communication at electrical synapses, was decreased by at least 50% on OFF α-ganglion cells. Reduced and incorrect gap junction connectivity of α-ganglion cells will affect their functional properties and alter visual image processing in the retina. The anomalous connectivity of retinal ganglion cells would potentially limit future therapeutic approaches involving manipulation of the Pten pathway for treating ganglion cell degeneration in diseases like glaucoma, traumatic brain injury, Parkinson’s, and Alzheimer’s diseases.


2016 ◽  
Author(s):  
Gerrit Hilgen ◽  
Sahar Pirmoradian ◽  
Daniela Pamplona ◽  
Pierre Kornprobst ◽  
Bruno Cessac ◽  
...  

AbstractWe have investigated the ontogeny of light-driven responses in mouse retinal ganglion cells (RGCs). Using a large-scale, high-density multielectrode array, we recorded from hundreds to thousands of RGCs simultaneously at pan-retinal level, including dorsal and ventral locations. Responses to different contrasts not only revealed a complex developmental profile for ON, OFF and ON-OFF RGC types, but also unveiled differences between dorsal and ventral RGCs. At eye-opening, dorsal RGCs of all types were more responsive to light, perhaps indicating an environmental priority to nest viewing for pre-weaning pups. The developmental profile of ON and OFF RGCs exhibited antagonistic behavior, with the strongest ON responses shortly after eye-opening, followed by an increase in the strength of OFF responses later on. Further, we found that with maturation receptive field (RF) center sizes decrease, responses to light get stronger, and centers become more circular while seeing differences in all of them between RGC types. These findings show that retinal functionality is not spatially homogeneous, likely reflecting ecological requirements that favour the early development of dorsal retina, and reflecting different roles in vision in the mature animal.


Sign in / Sign up

Export Citation Format

Share Document