cell coupling
Recently Published Documents


TOTAL DOCUMENTS

306
(FIVE YEARS 45)

H-INDEX

46
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Wenhan Zhao ◽  
Junqiao Wang ◽  
Ran Li ◽  
Bin Zhang

Abstract In this paper, a dual-band metamaterial absorber (MMA) with wide-angle and high absorptivity is proposed. The MMA consists of two silver layers separated by a dielectric layer. Its top resonant element is constituted by two concentric ring resonators connected with four strips. Based on electromagnetic field simulation, the proposed MMA has two narrow absorption peaks with an absorption rate of 99.9% at 711 nm and 99.8% at 830 nm, and the corresponding line width of the two absorption peaks are only 9.7 nm and 9.8 nm. The dual-band MMA shows high absorptivity under wide incident angles. The simulated field pattern shows that dual-band perfect absorption is the combined result of the interaction of two concentric ring resonators and unit cell coupling. In addition, the hexapole plasmon mode can be observed at the outer ring at one absorption peak. The narrow plasmon resonance has a potential application in optical sensing, and can be used to measure the concentration of aqueous glucose with two frequency channels. The proposed MMA with high absorptivity is simple to manufacture, and has other potential applications, such as narrow-band filters, energy storage device, and so on.


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Megan K. Rommelfanger ◽  
Adam L. MacLean

ABSTRACT Cells do not make fate decisions independently. Arguably, every cell-fate decision occurs in response to environmental signals. In many cases, cell-cell communication alters the dynamics of the internal gene regulatory network of a cell to initiate cell-fate transitions, yet models rarely take this into account. Here, we have developed a multiscale perspective to study the granulocyte-monocyte versus megakaryocyte-erythrocyte fate decisions. This transition is dictated by the GATA1-PU.1 network: a classical example of a bistable cell-fate system. We show that, for a wide range of cell communication topologies, even subtle changes in signaling can have pronounced effects on cell-fate decisions. We go on to show how cell-cell coupling through signaling can spontaneously break the symmetry of a homogenous cell population. Noise, both intrinsic and extrinsic, shapes the decision landscape profoundly, and affects the transcriptional dynamics underlying this important hematopoietic cell-fate decision-making system. This article has an associated ‘The people behind the papers’ interview.


2021 ◽  
Vol 8 ◽  
Author(s):  
Carlos Bueno-Beti ◽  
Angeliki Asimaki

Arrhythmogenic cardiomyopathy (ACM) is a heritable heart muscle disease characterized by syncope, palpitations, ventricular arrhythmias and sudden cardiac death (SCD) especially in young individuals. It is estimated to affect 1:5,000 individuals in the general population, with >60% of patients bearing one or more mutations in genes coding for desmosomal proteins. Desmosomes are intercellular adhesion junctions, which in cardiac myocytes reside within the intercalated disks (IDs), the areas of mechanical and electrical cell-cell coupling. Histologically, ACM is characterized by fibrofatty replacement of cardiac myocytes predominantly in the right ventricular free wall though left ventricular and biventricular forms have also been described. The disease is characterized by age-related progression, vast phenotypic manifestation and incomplete penetrance, making proband diagnosis and risk stratification of family members particularly challenging. Key protein redistribution at the IDs may represent a specific diagnostic marker but its applicability is still limited by the need for a myocardial sample. Specific markers of ACM in surrogate tissues, such as the blood and the buccal epithelium, may represent a non-invasive, safe and inexpensive alternative for diagnosis and cascade screening. In this review, we shall cover the most relevant biomarkers so far reported and discuss their potential impact on the diagnosis, prognosis and management of ACM.


2021 ◽  
Author(s):  
Giorgia De Gioannis ◽  
Alessandro Dell'Era ◽  
Aldo Muntoni ◽  
Mauro Pasquali ◽  
Alessandra Polettini ◽  
...  

Abstract This study investigated the performance of a novel integrated bio-electrochemical system for synergistic hydrogen production from a process combining a dark fermentation reactor and a galvanic cell. The operating principle of the system is based on the electrochemical conversion of protons released upon dissociation of the acid metabolites of the biological process and is mediated by the electron flow from the galvanic cell, coupling biochemical and electrochemical hydrogen production. Accordingly, the galvanic compartment also generates electricity. Four different experimental setups were designed to provide a preliminary assessment of the integrated bio-electrochemical process and identify the optimal configuration for further tests. Subsequently, dark fermentation of cheese whey was implemented both in a stand-alone biochemical reactor and in the integrated bio-electrochemical process. The integrated system achieved a hydrogen yield in the range 75.5 – 78.8 N LH2/kg TOC, showing a 3 times improvement over the biochemical process.


2021 ◽  
Vol 945 (1) ◽  
pp. 012045
Author(s):  
Yucui Shi ◽  
Gang Tang ◽  
Yanchao Ye ◽  
Xinyi Luo ◽  
Shaohong You

Abstract Constructed wetland-microbial fuel cell coupling system is a new type of bioelectrochemical system that couples constructed wetland and microbial fuel cell. The system plays an important role in biological power generation and sewage purification. The principle is that the bottom of the constructed wetland bed (low ORP) serves as the anode of the microbial fuel cell. The organic matter in the water is degraded under the action of the electricity-producing microorganisms and released during the degradation process. The electrons are transferred along the external circuit to the biocathode on the surface of the bed (higher ORP) to complete the redox reaction. This article summarizes the research progress of the microbial fuel cell-constructed wetland coupling system from two aspects: system structure and factors affecting system operation. The system structure includes electrode materials, substrates, wetland plants and microorganisms. The influencing factors include HRT, DO, organic matter concentration and wastewater composition, electrode structure. Finally, the problems and research directions of the microbial fuel cell-constructed wetland coupling system are summarized, and the research potential of the system is prospected.


Author(s):  
Claudia M. Lucero ◽  
Marcelo A. León ◽  
Paola Fernández ◽  
Juan A. Orellana ◽  
Victoria Velarde ◽  
...  

Connexin 43 (Cx43) is expressed in kidneys and constitutes a feedforward mechanism leading to inflammation in other tissues where they form hemichannels and gap junction channels. However, the possible functional relationship between these membrane channels and their role in damaged renal cells remains unknown. Here, analyses of ethidium uptake and thiobarbituric acid reactive species revealed that TNF-α plus IL-1β increase Cx43 hemichannel activity and oxidative stress in MES-13 cells, a cell line derived from mesangial cells. The latter also was accompanied by a reduction in gap junctional communication, whereas western blotting analysis showed a progressive increase of phosphorylated MYPT (a substrate of RhoA/ROCK) and Cx43 upon TNF-α/IL-1β treatment. Additionally, inhibition of RhoA/ROCK strongly diminished the TNF-α/IL-1β-induced activation of Cx43 hemichannels and reduction in gap junctional coupling. We propose that activation of Cx43 hemichannels and inhibition of cell coupling during pro-inflammatory conditions could contribute to oxidative stress and damage of mesangial cells via the RhoA/ROCK pathway.


2021 ◽  
Author(s):  
William E. Myles ◽  
Sally Anne McFadden

Abstract Electrical coupling between retinal neurons contributes to the functional complexity of visual circuits. “Cut-loading” methods allow simultaneous assessment of cell-coupling between multiple retinal cell-types, but existing analysis impedes direct comparison with gold standard direct dye injection techniques. Therefore cut-loading was used to assess coupling strength in a-type horizontal cells in dark-adapted Guinea pig retinae (n=29) using the standard protocol (Method 1) compared with two non-linear methods. Method 1 describes the distance of dye-diffusion (space constant), while Method 2 extracted the coupling coefficient (kj) and Method 3 measured the diffusion coefficient (De). Dye transfer was measured after one of five diffusion times (1-20 mins), or with a coupling inhibitor, meclofenamic acid (MFA) (50–500µM after 20 mins diffusion). Method 1 includes background fluorescence, producing less accurate coupling estimates than measuring the fluorescence of individual cell-soma (p<0.001). The space constant (Method 1) increased with diffusion time (p<0.01), whereas Methods 2 (p=0.54) and 3 (p=0.63) produced consistent results across all diffusion times. Method 1 was less sensitive to detecting changes induced by MFA than Methods 2 (p<0.01) and 3 (p<0.01). Comparatively, Methods 2 and 3 proved more sensitive and generalisable; allowing for detailed assessment of the coupling between different populations of gap-junction linked cell networks.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2422
Author(s):  
Stefan Dhein ◽  
Aida Salameh

The heart works as a functional syncytium, which is realized via cell-cell coupling maintained by gap junction channels. These channels connect two adjacent cells, so that action potentials can be transferred. Each cell contributes a hexameric hemichannel (=connexon), formed by protein subuntis named connexins. These hemichannels dock to each other and form the gap junction channel. This channel works as a low ohmic resistor also allowing the passage of small molecules up to 1000 Dalton. Connexins are a protein family comprising of 21 isoforms in humans. In the heart, the main isoforms are Cx43 (the 43 kDa connexin; ubiquitous), Cx40 (mostly in atrium and specific conduction system), and Cx45 (in early developmental states, in the conduction system, and between fibroblasts and cardiomyocytes). These gap junction channels are mainly located at the polar region of the cardiomyocytes and thus contribute to the anisotropic pattern of cardiac electrical conductivity. While in the beginning the cell–cell coupling was considered to be static, similar to an anatomically defined structure, we have learned in the past decades that gap junctions are also subject to cardiac remodeling processes in cardiac disease such as atrial fibrillation, myocardial infarction, or cardiomyopathy. The underlying remodeling processes include the modulation of connexin expression by e.g., angiotensin, endothelin, or catecholamines, as well as the modulation of the localization of the gap junctions e.g., by the direction and strength of local mechanical forces. A reduction in connexin expression can result in a reduced conduction velocity. The alteration of gap junction localization has been shown to result in altered pathways of conduction and altered anisotropy. In particular, it can produce or contribute to non-uniformity of anisotropy, and thereby can pre-form an arrhythmogenic substrate. Interestingly, these remodeling processes seem to be susceptible to certain pharmacological treatment.


Author(s):  
Karina Becerril-Varela ◽  
Jorge H. Serment-Guerrero ◽  
Gauddy Lizeth Manzanares-Leal ◽  
Ninfa Ramírez-Durán ◽  
Claudia Guerrero-Barajas

Sign in / Sign up

Export Citation Format

Share Document