scholarly journals Physiological Correlates of Perceptual Learning in Monkey V1 and V2

2002 ◽  
Vol 87 (4) ◽  
pp. 1867-1888 ◽  
Author(s):  
Geoffrey M. Ghose ◽  
Tianming Yang ◽  
John H. R. Maunsell

Performance in visual discrimination tasks improves with practice. Although the psychophysical parameters of these improvements have suggested the involvement of early areas in visual cortex, there has been little direct study of the physiological correlates of such perceptual learning at the level of individual neurons. To examine how neuronal response properties in the early visual system may change with practice, we trained monkeys for more than 6 mo in an orientation discrimination task in which behaviorally relevant stimuli were restricted to a particular retinal location and oriented around a specific orientation. During training the monkeys' discrimination thresholds gradually improved to much better than those of naive monkeys or humans. Although this improvement was specific to the trained orientation, it showed little retinotopic specificity. The receptive field properties of single neurons from regions representing the trained location and a location in the opposite visual hemifield were measured in V1 and V2. In most respects the receptive field properties in the representations of the trained and untrained regions were indistinguishable. However, in the regions of V1 and V2 representing the trained location, there were slightly fewer neurons whose optimal orientation was near the trained orientation. This resulted in a small but significant decrease in the V1 population response to the trained orientation at the trained location. Consequently, the observed neuronal populations did not exhibit any orientation-specific biases sufficient to explain the orientation specificity of the behavioral improvement. Pooling models suggest that the behavioral improvement was accomplished with a task-dependent and orientation-selective pooling of unaltered signals from early visual neurons. These data suggest that, even for training with stimuli suited to the selectivities found in early areas of visual cortex, behavioral improvements can occur in the absence of pronounced changes in the physiology of those areas.

Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


2004 ◽  
Vol 21 (1) ◽  
pp. 79-87 ◽  
Author(s):  
CHRIS TAILBY ◽  
ANDREW METHA

Conditioning human observers with an “artificial scotoma”—a small retinal area deprived of patterned stimulation within a larger area of dynamically textured noise—results in contractions and expansions of perceived space that are thought to reflect receptive-field changes among cells in the primary visual cortex (Kapadia et al., 1994). Here we show that one-dimensional counter-phase flickering grating patterns are also potent stimuli for producing artificial scotomata capable of altering three-element bisection ability analogous to those results reported earlier. Moreover, we found that the magnitude of the induced spatial distortions depends critically on the relative orientations of peri-scotomatous and test-stimulus spatial contrast. In addition, the perceptual distortions are found to be relatively short lived, decaying within 660 ms. The results support the hypothesis that artificial scotoma-induced perceptual distortions are generated by dynamic alteration of connection efficacy within a network linking cortical areas of similar orientation specificity, consistent with established anatomical and physiological results.


2002 ◽  
Vol 88 (3) ◽  
pp. 1128-1135 ◽  
Author(s):  
Timothy J. Gawne ◽  
Julie M. Martin

We report here results from 45 primate V4 visual cortical neurons to the preattentive presentations of seven different patterns located in two separate areas of the same receptive field and to combinations of the patterns in the two locations. For many neurons, we could not determine any clear relationship for the responses to two simultaneous stimuli. However, for a substantial fraction of the neurons we found that the firing rate was well modeled as the maximum firing rate of each stimulus presented separately. It has previously been proposed that taking the maximum of the inputs (“MAX” operator) could be a useful operation for neurons in visual cortex, although there has until now been little direct physiological evidence for this hypothesis. Our results here provide direct support for the hypothesis that the MAX operator plays a significant (although certainly not exclusive) role in generating the receptive field properties of visual cortical neurons.


1998 ◽  
Vol 118 (2) ◽  
pp. 279-285 ◽  
Author(s):  
Y.-X. Fu ◽  
Hong-Feng Gao ◽  
M.-W. Guo ◽  
S.-R. Wang

Sign in / Sign up

Export Citation Format

Share Document