cortical areas
Recently Published Documents


TOTAL DOCUMENTS

1562
(FIVE YEARS 320)

H-INDEX

118
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jean-Philippe Thivierge ◽  
Artem Pilzak

AbstractCommunication across anatomical areas of the brain is key to both sensory and motor processes. Dimensionality reduction approaches have shown that the covariation of activity across cortical areas follows well-delimited patterns. Some of these patterns fall within the "potent space" of neural interactions and generate downstream responses; other patterns fall within the "null space" and prevent the feedforward propagation of synaptic inputs. Despite growing evidence for the role of null space activity in visual processing as well as preparatory motor control, a mechanistic understanding of its neural origins is lacking. Here, we developed a mean-rate model that allowed for the systematic control of feedforward propagation by potent and null modes of interaction. In this model, altering the number of null modes led to no systematic changes in firing rates, pairwise correlations, or mean synaptic strengths across areas, making it difficult to characterize feedforward communication with common measures of functional connectivity. A novel measure termed the null ratio captured the proportion of null modes relayed from one area to another. Applied to simultaneous recordings of primate cortical areas V1 and V2 during image viewing, the null ratio revealed that feedforward interactions have a broad null space that may reflect properties of visual stimuli.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Sungmin Cho ◽  
Won Kee Chang ◽  
Jihong Park ◽  
Seung Hyun Lee ◽  
Jongseung Lee ◽  
...  

AbstractPrism Adaptation (PA) is used to alleviate spatial neglect. We combined immersive virtual reality with a depth-sensing camera to develop virtual prism adaptation therapy (VPAT), which block external visual cues and easily quantify and monitor errors than conventional PA. We conducted a feasibility study to investigate whether VPAT can induce behavioral adaptations by measuring after-effect and identifying which cortical areas were most significantly activated during VPAT using functional near-infrared spectroscopy (fNIRS). Fourteen healthy subjects participated in this study. The experiment consisted of four sequential phases (pre-VPAT, VPAT-10°, VPAT-20°, and post-VPAT). To compare the most significantly activated cortical areas during pointing in different phases against pointing during the pre-VPAT phase, we analyzed changes in oxyhemoglobin concentration using fNIRS during pointing. The pointing errors of the virtual hand deviated to the right-side during early pointing blocks in the VPAT-10° and VPAT-20° phases. There was a left-side deviation of the real hand to the target in the post-VPAT phase, demonstrating after-effect. The most significantly activated channels during pointing tasks were located in the right hemisphere, and possible corresponding cortical areas included the dorsolateral prefrontal cortex and frontal eye field. In conclusion, VPAT may induce behavioral adaptation with modulation of the dorsal attentional network.


2022 ◽  
Author(s):  
Alberto Lazari ◽  
Piergiorgio Salvan ◽  
Michiel Cottaar ◽  
Daniel Papp ◽  
Matthew FS Rushworth ◽  
...  

Synaptic plasticity is required for learning and follows Hebb's Rule, the computational principle underpinning associative learning. In recent years, a complementary type of brain plasticity has been identified in myelinated axons, which make up the majority of brain's white matter. Like synaptic plasticity, myelin plasticity is required for learning, but it is unclear whether it is Hebbian or whether it follows different rules. Here, we provide evidence that white matter plasticity operates following Hebb's Rule in humans. Across two experiments, we find that co-stimulating cortical areas to induce Hebbian plasticity leads to relative increases in cortical excitability and associated increases in a myelin marker within the stimulated fiber bundle. We conclude that Hebbian plasticity extends beyond synaptic changes, and can be observed in human white matter fibers.


2022 ◽  
Author(s):  
HUY CU ◽  
LAURIE LYNCH ◽  
KEVIN HUANG ◽  
WILSON TRUCCOLO ◽  
ARTO NURMIKKO

Abstract In asking the question of how the brain adapts to changes in the softness of manipulated objects, we studied dynamic communication between the primary sensory and motor cortical areas when nonhuman primates grasp and squeeze an elastically deformable manipulandum to attain an instructed force level. We focused on local field potentials recorded from S1 and M1 via intracortical microelectrode arrays. We computed nonparametric spectral Granger Causality to assess directed cortico-cortical interactions between these two areas. We demonstrate that the time-causal relationship between M1 and S1 is bidirectional in the beta-band (15-30Hz) and that this interareal communication develops dynamically as the subjects adjust the force of hand squeeze to reach the target level. In particular, the directed interaction is strongest when subjects are focused on maintaining the instructed force of hand squeeze in a steady state for several seconds. When the manipulandum’s compliance is abruptly changed, beta-band interareal communication is interrupted for a short period (~ 1 second) and then is re-established once the subject has reached a new steady state. These results suggest that transient beta oscillations can provide a communication subspace for dynamic cortico-cortical S1-M1 interactions during maintenance of steady sensorimotor states.


2022 ◽  
Vol 15 ◽  
Author(s):  
Anthony Beh ◽  
Paul V. McGraw ◽  
Ben S. Webb ◽  
Denis Schluppeck

Loss of vision across large parts of the visual field is a common and devastating complication of cerebral strokes. In the clinic, this loss is quantified by measuring the sensitivity threshold across the field of vision using static perimetry. These methods rely on the ability of the patient to report the presence of lights in particular locations. While perimetry provides important information about the intactness of the visual field, the approach has some shortcomings. For example, it cannot distinguish where in the visual pathway the key processing deficit is located. In contrast, brain imaging can provide important information about anatomy, connectivity, and function of the visual pathway following stroke. In particular, functional magnetic resonance imaging (fMRI) and analysis of population receptive fields (pRF) can reveal mismatches between clinical perimetry and maps of cortical areas that still respond to visual stimuli after stroke. Here, we demonstrate how information from different brain imaging modalities—visual field maps derived from fMRI, lesion definitions from anatomical scans, and white matter tracts from diffusion weighted MRI data—provides a more complete picture of vision loss. For any given location in the visual field, the combination of anatomical and functional information can help identify whether vision loss is due to absence of gray matter tissue or likely due to white matter disconnection from other cortical areas. We present a combined imaging acquisition and visual stimulus protocol, together with a description of the analysis methodology, and apply it to datasets from four stroke survivors with homonymous field loss (two with hemianopia, two with quadrantanopia). For researchers trying to understand recovery of vision after stroke and clinicians seeking to stratify patients into different treatment pathways, this approach combines multiple, convergent sources of data to characterize the extent of the stroke damage. We show that such an approach gives a more comprehensive measure of residual visual capacity—in two particular respects: which locations in the visual field should be targeted and what kind of visual attributes are most suited for rehabilitation.


2022 ◽  
Author(s):  
Kendra Leigh Seaman ◽  
Alexander P. Christensen ◽  
Katherine Senn ◽  
Jessica Cooper ◽  
Brittany Shane Cassidy

Trust is a key component of social interaction. Older adults, however, often exhibit excessive trust relative to younger adults. One explanation is that older adults may learn to trust differently than younger adults. Here, we examine how younger (N=33) and older adults (N=30) learn to trust over time. Participants completed a classic iterative trust game with three partners. Younger and older adults shared similar amounts but differed in how they shared money. Compared to younger adults, older adults invested more with untrustworthy partners and less with trustworthy partners. As a group, older adults displayed less learning than younger adults. However, computational modeling shows that this is because older adults are more likely to forget what they have learned over time. Model-based fMRI analyses revealed several age-related differences in neural processing. Younger adults showed prediction error signals in social processing areas while older adults showed over-recruitment of several cortical areas. Collectively, these findings suggest that older adults attend to and learn from social cues differently from younger adults.


2022 ◽  
Vol 15 ◽  
Author(s):  
Nathan R. Wilson ◽  
Forea L. Wang ◽  
Naiyan Chen ◽  
Sherry X. Yan ◽  
Amy L. Daitch ◽  
...  

Here we demonstrate a facile method by which to deliver complex spatiotemporal stimulation to neural networks in fast patterns, to trigger interesting forms of circuit-level plasticity in cortical areas. We present a complete platform by which patterns of electricity can be arbitrarily defined and distributed across a brain circuit, either simultaneously, asynchronously, or in complex patterns that can be easily designed and orchestrated with precise timing. Interfacing with acute slices of mouse cortex, we show that our system can be used to activate neurons at many locations and drive synaptic transmission in distributed patterns, and that this elicits new forms of plasticity that may not be observable via traditional methods, including interesting measurements of associational and sequence plasticity. Finally, we introduce an automated “network assay” for imaging activation and plasticity across a circuit. Spatiotemporal stimulation opens the door for high-throughput explorations of plasticity at the circuit level, and may provide a basis for new types of adaptive neural prosthetics.


2022 ◽  
Author(s):  
Sebastian M Frank ◽  
Markus Becker ◽  
Andrea Qi ◽  
Patricia Geiger ◽  
Ulrike I Frank ◽  
...  

It is unclear why and how children learn more efficiently than adults, although inhibitory systems, which play an important role in stabilizing learning, are immature in children. Here, we found that despite a lower baseline concentration of gamma-aminobutyric acid (GABA) in early visual cortical areas in children (8 to 11 years old) than adults (18 to 35 years old), children exhibited a rapid boost of GABA immediately after visual training, whereas the concentration of GABA in adults remained unchanged after training. Moreover, behavioral experiments showed that children stabilized visual learning much faster than adults, showing rapid development of resilience to retrograde interference. These results together suggest that inhibitory systems in children's brains are more dynamic and adapt more quickly to stabilize learning than in adults.


2022 ◽  
Author(s):  
Sadra Sadeh ◽  
Claudia Clopath

Neuronal responses to similar stimuli change dynamically over time, raising the question of how internal representations can provide a stable substrate for neural coding. While the drift of these representations is mostly characterized in relation to external stimuli or tasks, behavioural or internal state of the animal is also known to modulate the neural activity. We therefore asked how the variability of such modulatory mechanisms can contribute to representational drift. By analysing publicly available datasets from the Allen Brain Observatory, we found that behavioural variability significantly contributes to changes in stimulus-induced neuronal responses across various cortical areas in the mouse. This effect could not be explained by a gain model in which change in the behavioural state scaled the signal or the noise. A better explanation was provided by a model in which behaviour contributed independently to neuronal tuning. Our results are consistent with a view in which behaviour modulates the low-dimensional, slowly-changing setpoints of neurons, upon which faster operations like sensory processing are performed. Importantly, our analysis suggests that reliable but variable behavioural signals might be misinterpreted as representational drift, if neuronal representations are only characterized in the stimulus space and marginalised over behavioural parameters.


2021 ◽  
pp. 1-14
Author(s):  
Assaf Harel ◽  
Jeffery D. Nador ◽  
Michael F. Bonner ◽  
Russell A. Epstein

Abstract Scene perception and spatial navigation are interdependent cognitive functions, and there is increasing evidence that cortical areas that process perceptual scene properties also carry information about the potential for navigation in the environment (navigational affordances). However, the temporal stages by which visual information is transformed into navigationally relevant information are not yet known. We hypothesized that navigational affordances are encoded during perceptual processing and therefore should modulate early visually evoked ERPs, especially the scene-selective P2 component. To test this idea, we recorded ERPs from participants while they passively viewed computer-generated room scenes matched in visual complexity. By simply changing the number of doors (no doors, 1 door, 2 doors, 3 doors), we were able to systematically vary the number of pathways that afford movement in the local environment, while keeping the overall size and shape of the environment constant. We found that rooms with no doors evoked a higher P2 response than rooms with three doors, consistent with prior research reporting higher P2 amplitude to closed relative to open scenes. Moreover, we found P2 amplitude scaled linearly with the number of doors in the scenes. Navigability effects on the ERP waveform were also observed in a multivariate analysis, which showed significant decoding of the number of doors and their location at earlier time windows. Together, our results suggest that navigational affordances are represented in the early stages of scene perception. This complements research showing that the occipital place area automatically encodes the structure of navigable space and strengthens the link between scene perception and navigation.


Sign in / Sign up

Export Citation Format

Share Document