scholarly journals Existence of Positive Solutions form-Point Boundary Value Problems on Time Scales

2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Zhang ◽  
ShiDong Qiao

We study the one-dimensionalp-Laplacianm-point boundary value problem(φp(uΔ(t)))Δ+a(t)f(t,u(t))=0,t∈[0,1]T,u(0)=0,u(1)=∑i=1m−2aiu(ξi), whereTis a time scale,φp(s)=|s|p−2s,p>1, some new results are obtained for the existence of at least one, two, and three positive solution/solutions of the above problem by usingKrasnosel′skll′sfixed point theorem, new fixed point theorem due to Avery and Henderson, as well as Leggett-Williams fixed point theorem. This is probably the first time the existence of positive solutions of one-dimensionalp-Laplacianm-point boundary value problem on time scales has been studied.

2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Fatma Tokmak ◽  
Ilkay Yaslan Karaca

A four-functional fixed point theorem and a generalization of Leggett-Williams fixed point theorem are used, respectively, to investigate the existence of at least one positive solution and at least three positive solutions for third-order -point boundary value problem on time scales with an increasing homeomorphism and homomorphism, which generalizes the usual -Laplacian operator. In particular, the nonlinear term is allowed to change sign. As an application, we also give some examples to demonstrate our results.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 526
Author(s):  
Ehsan Pourhadi ◽  
Reza Saadati ◽  
Sotiris K. Ntouyas

Throughout this paper, via the Schauder fixed-point theorem, a generalization of Krasnoselskii’s fixed-point theorem in a cone, as well as some inequalities relevant to Green’s function, we study the existence of positive solutions of a nonlinear, fractional three-point boundary-value problem with a term of the first order derivative ( a C D α x ) ( t ) = f ( t , x ( t ) , x ′ ( t ) ) , a < t < b , 1 < α < 2 , x ( a ) = 0 , x ( b ) = μ x ( η ) , a < η < b , μ > λ , where λ = b − a η − a and a C D α denotes the Caputo’s fractional derivative, and f : [ a , b ] × R × R → R is a continuous function satisfying the certain conditions.


2003 ◽  
Vol 46 (2) ◽  
pp. 279-292 ◽  
Author(s):  
Ruyun Ma

AbstractIn this paper we consider the existence of positive solutions to the boundary-value problems\begin{align*} (p(t)u')'-q(t)u+\lambda f(t,u)\amp=0,\quad r\ltt\ltR, \\[2pt] au(r)-bp(r)u'(r)\amp=\sum^{m-2}_{i=1}\alpha_iu(\xi_i), \\ cu(R)+dp(R)u'(R)\amp=\sum^{m-2}_{i=1}\beta_iu(\xi_i), \end{align*}where $\lambda$ is a positive parameter, $a,b,c,d\in[0,\infty)$, $\xi_i\in(r,R)$, $\alpha_i,\beta_i\in[0,\infty)$ (for $i\in\{1,\dots m-2\}$) are given constants satisfying some suitable conditions. Our results extend some of the existing literature on superlinear semipositone problems. The proofs are based on the fixed-point theorem in cones.AMS 2000 Mathematics subject classification: Primary 34B10, 34B18, 34B15


2009 ◽  
Vol 2009 ◽  
pp. 1-15
Author(s):  
Jian Liu ◽  
Fuyi Xu

We study the following third-orderm-point boundary value problems on time scales(φ(uΔ∇))∇+a(t)f(u(t))=0,t∈[0,T]T,u(0)=∑i=1m−2biu(ξi),uΔ(T)=0,φ(uΔ∇(0))=∑i=1m−2ciφ(uΔ∇(ξi)), whereφ:R→Ris an increasing homeomorphism and homomorphism andφ(0)=0,0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of three positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Yanping Guo ◽  
Wenying Wei ◽  
Yuerong Chen

We consider the multi-point discrete boundary value problem with one-dimensionalp-Laplacian operatorΔ(ϕp(Δu(t−1))+q(t)f(t,u(t),Δu(t))=0,t∈{1,…,n−1}subject to the boundary conditions:u(0)=0,u(n)=∑i=1m−2aiu(ξi), whereϕp(s)=|s|p−2s,p>1,ξi∈{2,…,n−2}with1<ξ1<⋯<ξm−2<n−1andai∈(0,1),0<∑i=1m−2ai<1. Using a new fixed point theorem due to Avery and Peterson, we study the existence of at least three positive solutions to the above boundary value problem.


2017 ◽  
Vol 67 (2) ◽  
Author(s):  
Ilkay Yaslan Karaca ◽  
Fatma Tokmak Fen

AbstractIn this paper, six functionals fixed point theorem is used to investigate the existence of at least three positive solutions for a nonlinear


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
İsmail Yaslan

By means of fixed-point theorems, we investigate the existence of positive solutions for nonlinear first-order -point boundary value problem , , where is a time scale, , are given constants.


2008 ◽  
Vol 2008 ◽  
pp. 1-16 ◽  
Author(s):  
Fuyi Xu

We study the following third-orderp-Laplacianm-point boundary value problems on time scales:(ϕp(uΔ∇))∇+a(t)f(t,u(t))=0,t∈[0,T]T,βu(0)−γuΔ(0)=0,u(T)=∑i=1m−2aiu(ξi),ϕp(uΔ∇(0))=∑i=1m−2biϕp(uΔ∇(ξi)), whereϕp(s)isp-Laplacian operator, that is,ϕp(s)=|s|p−2s,p>1,  ϕp−1=ϕq,1/p+1/q=1,  0<ξ1<⋯<ξm−2<ρ(T). We obtain the existence of positive solutions by using fixed-point theorem in cones. The conclusions in this paper essentially extend and improve the known results.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Li-Juan Gao ◽  
Jian-Ping Sun

We are concerned with the following third-order three-point boundary value problem:u′′′t=ft, ut,   t∈0, 1,   u′0=u1=0and u′′η-αu′1=0,whereα∈0, 1andη∈(14+α)/(24-3α),1. Although the corresponding Green’s function is sign-changing, we still obtain the existence of at least two positive and decreasing solutions under some suitable conditions onfby using the two-fixed-point theorem due to Avery and Henderson.


Sign in / Sign up

Export Citation Format

Share Document