scholarly journals An Abstract Description Method of Map-Reduce-Merge Using Haskell

2013 ◽  
Vol 2013 ◽  
pp. 1-12
Author(s):  
Lei Liu ◽  
Dongqing Liu ◽  
Shuai Lü ◽  
Peng Zhang

Map-Reduce-Merge is an improved parallel programming model based on Map-Reduce in cloud computing environment. Through the new Merge module, Map-Reduce-Merge can support processing multiple related heterogeneous datasets more efficiently. In order to demonstrate the validity and effectiveness of this new model, we present a rigorous description for Map-Reduce-Merge model using Haskell. Firstly, we describe the basic program skeleton of Map-Reduce-Merge programming model. Secondly, an abstract description for the Merge module is presented by analyzing the structure and function of the Merge module with Haskell as the description tool. Thirdly, we evaluate the Map-Reduce-Merge model on the basis of our description. We capture the functional characteristics of the Map-Reduce-Merge model by our abstract description, which can provide theoretical basis for designing more efficient parallel programming model to process join operation.

2015 ◽  
Vol 44 (4) ◽  
pp. 832-866 ◽  
Author(s):  
Ren Li ◽  
Haibo Hu ◽  
Heng Li ◽  
Yunsong Wu ◽  
Jianxi Yang

2016 ◽  
Vol 43 ◽  
pp. 95-103 ◽  
Author(s):  
James A. Ross ◽  
David A. Richie ◽  
Song J. Park ◽  
Dale R. Shires

2021 ◽  
Vol 24 (1) ◽  
pp. 157-183
Author(s):  
Никита Андреевич Катаев

Automation of parallel programming is important at any stage of parallel program development. These stages include profiling of the original program, program transformation, which allows us to achieve higher performance after program parallelization, and, finally, construction and optimization of the parallel program. It is also important to choose a suitable parallel programming model to express parallelism available in a program. On the one hand, the parallel programming model should be capable to map the parallel program to a variety of existing hardware resources. On the other hand, it should simplify the development of the assistant tools and it should allow the user to explore the parallel program the assistant tools generate in a semi-automatic way. The SAPFOR (System FOR Automated Parallelization) system combines various approaches to automation of parallel programming. Moreover, it allows the user to guide the parallelization if necessary. SAPFOR produces parallel programs according to the high-level DVMH parallel programming model which simplify the development of efficient parallel programs for heterogeneous computing clusters. This paper focuses on the approach to semi-automatic parallel programming, which SAPFOR implements. We discuss the architecture of the system and present the interactive subsystem which is useful to guide the SAPFOR through program parallelization. We used the interactive subsystem to parallelize programs from the NAS Parallel Benchmarks in a semi-automatic way. Finally, we compare the performance of manually written parallel programs with programs the SAPFOR system builds.


Sign in / Sign up

Export Citation Format

Share Document