scholarly journals Dictionary Learning Based on Nonnegative Matrix Factorization Using Parallel Coordinate Descent

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zunyi Tang ◽  
Shuxue Ding ◽  
Zhenni Li ◽  
Linlin Jiang

Sparse representation of signals via an overcomplete dictionary has recently received much attention as it has produced promising results in various applications. Since the nonnegativities of the signals and the dictionary are required in some applications, for example, multispectral data analysis, the conventional dictionary learning methods imposed simply with nonnegativity may become inapplicable. In this paper, we propose a novel method for learning a nonnegative, overcomplete dictionary for such a case. This is accomplished by posing the sparse representation of nonnegative signals as a problem of nonnegative matrix factorization (NMF) with a sparsity constraint. By employing the coordinate descent strategy for optimization and extending it to multivariable case for processing in parallel, we develop a so-called parallel coordinate descent dictionary learning (PCDDL) algorithm, which is structured by iteratively solving the two optimal problems, the learning process of the dictionary and the estimating process of the coefficients for constructing the signals. Numerical experiments demonstrate that the proposed algorithm performs better than the conventional nonnegative K-SVD (NN-KSVD) algorithm and several other algorithms for comparison. What is more, its computational consumption is remarkably lower than that of the compared algorithms.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Melisew Tefera Belachew

Determining the number of clusters in high-dimensional real-life datasets and interpreting the final outcome are among the challenging problems in data science. Discovering the number of classes in cancer and microarray data plays a vital role in the treatment and diagnosis of cancers and other related diseases. Nonnegative matrix factorization (NMF) plays a paramount role as an efficient data exploratory tool for extracting basis features inherent in massive data. Some algorithms which are based on incorporating sparsity constraints in the nonconvex NMF optimization problem are applied in the past for analyzing microarray datasets. However, to the best of our knowledge, none of these algorithms use block coordinate descent method which is known for providing closed form solutions. In this paper, we apply an algorithm developed based on columnwise partitioning and rank-one matrix approximation. We test this algorithm on two well-known cancer datasets: leukemia and multiple myeloma. The numerical results indicate that the proposed algorithm performs significantly better than related state-of-the-art methods. In particular, it is shown that this method is capable of robust clustering and discovering larger cancer classes in which the cluster splits are stable.


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 5161-5168 ◽  
Author(s):  
Zuyuan Yang ◽  
Yu Zhang ◽  
Wei Yan ◽  
Yong Xiang ◽  
Shengli Xie

Author(s):  
Xiaopeng Liu ◽  
Cong Liu ◽  
Xiaochen Liu

Due to the scattering and absorption effects in the undersea environment, underwater image enhancement is a challenging problem. To obtain the ground-truth data for training is also an open problem. So, the learning process is unavailable. In this paper, we propose a Low-Rank Nonnegative Matrix Factorization (LR-NMF) method, which only uses the degraded underwater image as input to generate the more clear and realistic image. According to the underwater image formation model, the degraded underwater image could be separated into three parts, the directed component, the back and forward scattering components. The latter two parts can be considered as scattering. The directed component is constrained to have a low rank. After that, the restored underwater image is obtained. The quantitative and qualitative analyses illustrate that the proposed method performed equivalent or better than the state-of-the-art methods. Yet, it’s simple to implement without the training process.


2018 ◽  
Vol 102 ◽  
pp. 8-14 ◽  
Author(s):  
Sheng Huang ◽  
Hongxing Wang ◽  
Yongxin Ge ◽  
Luwen Huangfu ◽  
Xiaohong Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document