A Convex Optimization-Based Coupled Nonnegative Matrix Factorization Algorithm for Hyperspectral and Multispectral Data Fusion

2018 ◽  
Vol 56 (3) ◽  
pp. 1652-1667 ◽  
Author(s):  
Chia-Hsiang Lin ◽  
Fei Ma ◽  
Chong-Yung Chi ◽  
Chih-Hsiang Hsieh
2017 ◽  
Vol 11 (2) ◽  
pp. 025008 ◽  
Author(s):  
Fatima Zohra Benhalouche ◽  
Moussa Sofiane Karoui ◽  
Yannick Deville ◽  
Abdelaziz Ouamri

Author(s):  
Akhand Rai ◽  
Sanjay H Upadhyay

Bearing faults are a major reason for the catastrophic breakdown of rotating machinery. Therefore, the early detection of bearing faults becomes a necessity to attain an uninterrupted and safe operation. This paper proposes a novel approach based on semi-nonnegative matrix factorization for detection of incipient faults in bearings. The semi-nonnegative matrix factorization algorithm creates a sparse, localized, part-based representation of the original data and assists to capture the fault information in bearing signals more effectively. Through semi-nonnegative matrix factorization, two bearing health indicators are derived to fulfill the desired purpose. In doing so, the paper tries to address two critical issues: (i) how to reduce the dimensionality of feature space (ii) how to obtain a definite range of the indicator between 0 and 1. Firstly, a set of time domain, frequency domain, and time–frequency domain features are extracted from the bearing vibration signals. Secondly, the feature dataset is utilized to train the semi-nonnegative matrix factorization algorithm which decomposes the training data matrix into two new matrices of lower ranks. Thirdly, the test feature vectors are projected onto these lower dimensional matrices to obtain two statistics called as square prediction error and Q2. Finally, the Bayesian inference approach is exploited to convert the two statistics into health indicators that have a fixed range between [0–1]. The application of the advocated technique on experimental bearing signals demonstrates that it can effectively predict the weak defects in bearings as well as performs better than the earlier methods like principal component analysis and locality preserving projections.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Zunyi Tang ◽  
Shuxue Ding ◽  
Zhenni Li ◽  
Linlin Jiang

Sparse representation of signals via an overcomplete dictionary has recently received much attention as it has produced promising results in various applications. Since the nonnegativities of the signals and the dictionary are required in some applications, for example, multispectral data analysis, the conventional dictionary learning methods imposed simply with nonnegativity may become inapplicable. In this paper, we propose a novel method for learning a nonnegative, overcomplete dictionary for such a case. This is accomplished by posing the sparse representation of nonnegative signals as a problem of nonnegative matrix factorization (NMF) with a sparsity constraint. By employing the coordinate descent strategy for optimization and extending it to multivariable case for processing in parallel, we develop a so-called parallel coordinate descent dictionary learning (PCDDL) algorithm, which is structured by iteratively solving the two optimal problems, the learning process of the dictionary and the estimating process of the coefficients for constructing the signals. Numerical experiments demonstrate that the proposed algorithm performs better than the conventional nonnegative K-SVD (NN-KSVD) algorithm and several other algorithms for comparison. What is more, its computational consumption is remarkably lower than that of the compared algorithms.


Sign in / Sign up

Export Citation Format

Share Document