scholarly journals Solution of Nonlinear Partial Differential Equations by New Laplace Variational Iteration Method

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Eman M. A. Hilal ◽  
Tarig M. Elzaki

The aim of this study is to give a good strategy for solving some linear and nonlinear partial differential equations in engineering and physics fields, by combining Laplace transform and the modified variational iteration method. This method is based on the variational iteration method, Laplace transforms, and convolution integral, introducing an alternative Laplace correction functional and expressing the integral as a convolution. Some examples in physical engineering are provided to illustrate the simplicity and reliability of this method. The solutions of these examples are contingent only on the initial conditions.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Fukang Yin ◽  
Junqiang Song ◽  
Xiaoqun Cao ◽  
Fengshun Lu

This paper develops a modified variational iteration method coupled with the Legendre wavelets, which can be used for the efficient numerical solution of nonlinear partial differential equations (PDEs). The approximate solutions of PDEs are calculated in the form of a series whose components are computed by applying a recursive relation. Block pulse functions are used to calculate the Legendre wavelets coefficient matrices of the nonlinear terms. The main advantage of the new method is that it can avoid solving the nonlinear algebraic system and symbolic computation. Furthermore, the developed vector-matrix form makes it computationally efficient. The results show that the proposed method is very effective and easy to implement.


Sign in / Sign up

Export Citation Format

Share Document