scholarly journals Third-Order Approximate Solution of Chemical Reaction-Diffusion Brusselator System Using Optimal Homotopy Asymptotic Method

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Salem Alkhalaf

The objective of this paper is to investigate the effectiveness and performance of optimal homotopy asymptotic method in solving a system of nonlinear partial differential equations. Since mathematical modeling of certain chemical reaction-diffusion experiments leads to Brusselator equations, it is worth demanding a new technique to solve such a system. We construct a new efficient recurrent relation to solve nonlinear Brusselator system of equations. It is observed that the method is easy to implement and quite valuable for handling nonlinear system of partial differential equations and yielding excellent results at minimum computational cost. Analytical solutions of Brusselator system are presented to demonstrate the viability and practical usefulness of the method. The results reveal that the method is explicit, effective, and easy to use.

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-6 ◽  
Author(s):  
Rashid Nawaz ◽  
Zawar Hussain ◽  
Abraiz Khattak ◽  
Adam Khan

In this paper, Daftardar–Jeffery Polynomials are introduced in the Optimal Homotopy Asymptotic Method for solution of a coupled system of nonlinear partial differential equations. The coupled nonlinear KdV system is taken as test example. The results obtained by the proposed method are compared with the multistage Optimal Homotopy Asymptotic Method. The results show the efficiency and consistency of the proposed method over the Optimal Homotopy Asymptotic Method. In addition, accuracy of the proposed method can be improved by taking higher order approximations.


Author(s):  
B. V. Rathish Kumar ◽  
Gopal Priyadarshi

We describe a wavelet Galerkin method for numerical solutions of fourth-order linear and nonlinear partial differential equations (PDEs) in 2D and 3D based on the use of Daubechies compactly supported wavelets. Two-term connection coefficients have been used to compute higher-order derivatives accurately and economically. Localization and orthogonality properties of wavelets make the global matrix sparse. In particular, these properties reduce the computational cost significantly. Linear system of equations obtained from discretized equations have been solved using GMRES iterative solver. Quasi-linearization technique has been effectively used to handle nonlinear terms arising in nonlinear biharmonic equation. To reduce the computational cost of our method, we have proposed an efficient compression algorithm. Error and stability estimates have been derived. Accuracy of the proposed method is demonstrated through various examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Vipul K. Baranwal ◽  
Ram K. Pandey ◽  
Om P. Singh

We propose optimal variational asymptotic method to solve time fractional nonlinear partial differential equations. In the proposed method, an arbitrary number of auxiliary parameters γ0,γ1,γ2,… and auxiliary functions H0(x),H1(x),H2(x),… are introduced in the correction functional of the standard variational iteration method. The optimal values of these parameters are obtained by minimizing the square residual error. To test the method, we apply it to solve two important classes of nonlinear partial differential equations: (1) the fractional advection-diffusion equation with nonlinear source term and (2) the fractional Swift-Hohenberg equation. Only few iterations are required to achieve fairly accurate solutions of both the first and second problems.


2020 ◽  
Vol 28 (4) ◽  
pp. 197-222
Author(s):  
Christian Beck ◽  
Fabian Hornung ◽  
Martin Hutzenthaler ◽  
Arnulf Jentzen ◽  
Thomas Kruse

AbstractOne of the most challenging problems in applied mathematics is the approximate solution of nonlinear partial differential equations (PDEs) in high dimensions. Standard deterministic approximation methods like finite differences or finite elements suffer from the curse of dimensionality in the sense that the computational effort grows exponentially in the dimension. In this work we overcome this difficulty in the case of reaction–diffusion type PDEs with a locally Lipschitz continuous coervice nonlinearity (such as Allen–Cahn PDEs) by introducing and analyzing truncated variants of the recently introduced full-history recursive multilevel Picard approximation schemes.


Sign in / Sign up

Export Citation Format

Share Document