scholarly journals The Existence of Normalized Solutions for a Nonlocal Problem in ℝ3

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jing Yang

In this paper, we study the following fractional Schrödinger equation in ℝ3−Δσu−λu=up−2u, in ℝ3 with σ∈0,1,λ∈ℝ and p∈2+σ,2+4/3σ. By using the constrained variational method, we show the existence of solutions with prescribed L2 norm for this problem.

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Jing Chen ◽  
Zu Gao

Abstract We consider the following nonlinear fractional Schrödinger equation: $$ (-\triangle )^{s} u+V(x)u=g(u) \quad \text{in } \mathbb{R} ^{N}, $$ ( − △ ) s u + V ( x ) u = g ( u ) in  R N , where $s\in (0, 1)$ s ∈ ( 0 , 1 ) , $N>2s$ N > 2 s , $V(x)$ V ( x ) is differentiable, and $g\in C ^{1}(\mathbb{R} , \mathbb{R} )$ g ∈ C 1 ( R , R ) . By exploiting the minimization method with a constraint over Pohoz̆aev manifold, we obtain the existence of ground state solutions. With the help of Pohoz̆aev identity we also process the existence of the least energy solutions for the above equation. Our results improve the existing study on this nonlocal problem with Berestycki–Lions type nonlinearity to the one that does not need the oddness assumption.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Songbai Peng ◽  
Aliang Xia

<p style='text-indent:20px;'>We are concerned with the following nonlinear fractional Schrödinger equation:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$\begin{equation} (-\Delta)^s u+V(x)u+\omega u = |u|^{p-2}u\quad {\rm{in}}\,\,{\mathbb{R}}^N,\;\;\;\;\;\;({\textbf{P}})\end{equation}$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ s\in(0,1) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ p\in\left(2+4s/N,2^*_s\right) $\end{document}</tex-math></inline-formula>, that is, the mass supercritical and Sobolev subcritical. Under certain assumptions on the potential <inline-formula><tex-math id="M3">\begin{document}$ V:{\mathbb{R}}^N\rightarrow {\mathbb{R}} $\end{document}</tex-math></inline-formula>, positive and vanishing at infinity including potentials with singularities (which is important for physical reasons), we prove that there exists at least one <inline-formula><tex-math id="M4">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-normalized solution <inline-formula><tex-math id="M5">\begin{document}$ (u,\omega)\in H^s({\mathbb{R}}^N)\times{\mathbb{R}}^+ $\end{document}</tex-math></inline-formula> of equation (P). In order to overcome the lack of compactness, the proof is based on a new min-max argument and splitting lemma for nonlocal version.</p>


Sign in / Sign up

Export Citation Format

Share Document