Normalized solutions for the fractional Schrödinger equation with a focusing nonlocal L2-critical or L2-supercritical perturbation

2020 ◽  
Vol 61 (5) ◽  
pp. 051505 ◽  
Author(s):  
Tao Yang
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Jing Yang

In this paper, we study the following fractional Schrödinger equation in ℝ3−Δσu−λu=up−2u, in ℝ3 with σ∈0,1,λ∈ℝ and p∈2+σ,2+4/3σ. By using the constrained variational method, we show the existence of solutions with prescribed L2 norm for this problem.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Songbai Peng ◽  
Aliang Xia

<p style='text-indent:20px;'>We are concerned with the following nonlinear fractional Schrödinger equation:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$\begin{equation} (-\Delta)^s u+V(x)u+\omega u = |u|^{p-2}u\quad {\rm{in}}\,\,{\mathbb{R}}^N,\;\;\;\;\;\;({\textbf{P}})\end{equation}$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ s\in(0,1) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ p\in\left(2+4s/N,2^*_s\right) $\end{document}</tex-math></inline-formula>, that is, the mass supercritical and Sobolev subcritical. Under certain assumptions on the potential <inline-formula><tex-math id="M3">\begin{document}$ V:{\mathbb{R}}^N\rightarrow {\mathbb{R}} $\end{document}</tex-math></inline-formula>, positive and vanishing at infinity including potentials with singularities (which is important for physical reasons), we prove that there exists at least one <inline-formula><tex-math id="M4">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-normalized solution <inline-formula><tex-math id="M5">\begin{document}$ (u,\omega)\in H^s({\mathbb{R}}^N)\times{\mathbb{R}}^+ $\end{document}</tex-math></inline-formula> of equation (P). In order to overcome the lack of compactness, the proof is based on a new min-max argument and splitting lemma for nonlocal version.</p>


2018 ◽  
Vol 18 (1) ◽  
pp. 77-94
Author(s):  
Dan Li ◽  
Jiwei Zhang ◽  
Zhimin Zhang

AbstractA fast and accurate numerical scheme is presented for the computation of the time fractional Schrödinger equation on an unbounded domain. The main idea consists of two parts. First, we use artificial boundary methods to equivalently reformulate the unbounded problem into an initial-boundary value (IBV) problem. Second, we present two numerical schemes for the IBV problem: a direct scheme and a fast scheme. The direct scheme stands for the direct discretization of the Caputo fractional derivative by using the L1-formula. The fast scheme means that the sum-of-exponentials approximation is used to speed up the evaluation of the Caputo fractional derivative. The resulting fast algorithm significantly reduces the storage requirement and the overall computational cost compared to the direct scheme. Furthermore, the corresponding stability analysis and error estimates of two schemes are established, and numerical examples are given to verify the performance of our approach.


Sign in / Sign up

Export Citation Format

Share Document