lack of compactness
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
pp. 243-267
Author(s):  
Gustavo S. Costa ◽  
Giovany M. Figueiredo

Abstract We show existence and concentration results for a class of p&q critical problems given by − d i v a ϵ p | ∇ u | p ϵ p | ∇ u | p − 2 ∇ u + V ( z ) b | u | p | u | p − 2 u = f ( u ) + | u | q ⋆ − 2 u in R N , $$-div\left(a\left(\epsilon^{p}|\nabla u|^{p}\right) \epsilon^{p}|\nabla u|^{p-2} \nabla u\right)+V(z) b\left(|u|^{p}\right)|u|^{p-2} u=f(u)+|u|^{q^{\star}-2} u\, \text{in} \,\mathbb{R}^{N},$$ where u ∈ W 1,p (ℝ N ) ∩ W 1,q (ℝ N ), ϵ > 0 is a small parameter, 1 < p ≤ q < N, N ≥ 2 and q * = Nq/(N − q). The potential V is positive and f is a superlinear function of C 1 class. We use Mountain Pass Theorem and the penalization arguments introduced by Del Pino & Felmer’s associated to Lions’ Concentration and Compactness Principle in order to overcome the lack of compactness.


Author(s):  
Ibrahim Mahamat Barka ◽  
Mamadou Abdoul Diop ◽  
Khalil Ezzinbi ◽  
Mahamat Hassan Mahamat Hamit

2021 ◽  
Author(s):  
Giovanni Molica Bisci ◽  
Patrizia Pucci

Author(s):  
Xin Zhang

We investigate existence of solutions for a fractional Klein–Gordon coupled with Maxwell's equation. On the basis of overcoming the lack of compactness, we obtain that there is a radially symmetric solution for the critical system by means of variational methods.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Songbai Peng ◽  
Aliang Xia

<p style='text-indent:20px;'>We are concerned with the following nonlinear fractional Schrödinger equation:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$\begin{equation} (-\Delta)^s u+V(x)u+\omega u = |u|^{p-2}u\quad {\rm{in}}\,\,{\mathbb{R}}^N,\;\;\;\;\;\;({\textbf{P}})\end{equation}$ \end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ s\in(0,1) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ p\in\left(2+4s/N,2^*_s\right) $\end{document}</tex-math></inline-formula>, that is, the mass supercritical and Sobolev subcritical. Under certain assumptions on the potential <inline-formula><tex-math id="M3">\begin{document}$ V:{\mathbb{R}}^N\rightarrow {\mathbb{R}} $\end{document}</tex-math></inline-formula>, positive and vanishing at infinity including potentials with singularities (which is important for physical reasons), we prove that there exists at least one <inline-formula><tex-math id="M4">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>-normalized solution <inline-formula><tex-math id="M5">\begin{document}$ (u,\omega)\in H^s({\mathbb{R}}^N)\times{\mathbb{R}}^+ $\end{document}</tex-math></inline-formula> of equation (P). In order to overcome the lack of compactness, the proof is based on a new min-max argument and splitting lemma for nonlocal version.</p>


Sign in / Sign up

Export Citation Format

Share Document