scholarly journals Deep Reinforcement Learning for Scheduling in an Edge Computing-Based Industrial Internet of Things

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jingjing Wu ◽  
Guoliang Zhang ◽  
Jiaqi Nie ◽  
Yuhuai Peng ◽  
Yunhou Zhang

The demand for improving productivity in manufacturing systems makes the industrial Internet of things (IIoT) an important research area spawned by the Internet of things (IoT). In IIoT systems, there is an increasing demand for different types of industrial equipment to exchange stream data with different delays. Communications between massive heterogeneous industrial devices and clouds will cause high latency and require high network bandwidth. The introduction of edge computing in the IIoT can address unacceptable processing latency and reduce the heavy link burden. However, the limited resources in edge computing servers are one of the difficulties in formulating communication scheduling and resource allocation strategies. In this article, we use deep reinforcement learning (DRL) to solve the scheduling problem in edge computing to improve the quality of services provided to users in IIoT applications. First, we propose a hierarchical scheduling model considering the central-edge computing heterogeneous architecture. Then, according to the model characteristics, a deep intelligent scheduling algorithm (DISA) based on a double deep Q network (DDQN) framework is proposed to make scheduling decisions for communication. We compare DISA with other baseline solutions using various performance metrics. Simulation results show that the proposed algorithm is more effective than other baseline algorithms.

2021 ◽  
Vol 17 (7) ◽  
pp. 5010-5011
Author(s):  
Zhaolong Ning ◽  
Edith Ngai ◽  
Ricky Y. K. Kwok ◽  
Mohammad S. Obaidat

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 101539-101549 ◽  
Author(s):  
Hao Wu ◽  
Hui Tian ◽  
Gaofeng Nie ◽  
Pengtao Zhao

Sign in / Sign up

Export Citation Format

Share Document