The Functional Effects of Contrast Media on the Isolated Perfused Rat Kidney

Author(s):  
Peter W. G. Brown ◽  
John L. Haylor ◽  
A. Meguid El Nahas ◽  
Sameh K. Morcos
1991 ◽  
Vol 64 (761) ◽  
pp. 435-439 ◽  
Author(s):  
A. A. El Sayed ◽  
J. L. Haylor ◽  
A. M. El Nahas ◽  
S. Salzano ◽  
S. K. Morcos

1991 ◽  
Vol 25 (3) ◽  
pp. 195-204 ◽  
Author(s):  
Takano Takehito ◽  
Nakata Kazuyo ◽  
Kawakami Tsuyoshi ◽  
Miyazaki Yoshifumi ◽  
Murakami Masataka ◽  
...  

1979 ◽  
Vol 2 (1) ◽  
pp. 1-11
Author(s):  
Richard Solomon ◽  
Patricio Silva ◽  
Franklin H. Epstein

1987 ◽  
Vol 43 (6) ◽  
pp. 795-799 ◽  
Author(s):  
David R. Luke ◽  
Bertram L. Kasiske ◽  
Gary R. Matzke ◽  
Walid M. Awni ◽  
William F. Keane

1990 ◽  
Vol 126 (3) ◽  
pp. 403-408 ◽  
Author(s):  
A. G. Ellis ◽  
W. R. Adam ◽  
T. J. Martin

ABSTRACT The isolated perfused rat kidney was used to study the effects of amino-terminal fragments of human parathyroid hormone, hPTH(1–34), bovine parathyroid hormone, bPTH(1–84) and of PTH-related proteins, PTHrP(1–34), PTHrP(1–84), PTHrP(1–108) and PTHrP(1–141) on urinary bicarbonate excretion. PTHrP(1–34) (7 nmol/l), bPTH(1–84) (5·5 nmol/l) and hPTH(1–34) (7 nmol/l) had similar effects in increasing bicarbonate excretion with respect to the control. At lower concentrations (0·7 nmol/l) all PTHrP components, but not hPTH(1–34) or bPTH(1–84) increased bicarbonate excretion significantly. Infusions of PTHrP(1–108) and PTHrP(1–141) at 0·7 nmol/l, while associated with a rise in urinary bicarbonate concentration and excretion during the early stages of perfusion, produced a sharp decline in bicarbonate concentration and excretion in the latter part of perfusion. The different peptides produced no significant differences in glomerular filtration rate, fractional excretion of sodium or urine volume. The absence of substantial differences between the effects of hPTH(1–34) and PTHrP(1–34) are as noted in previous studies. The differences between PTHrP(1–108)/PTHrP(1–141) and PTHrP(1–34) demonstrated here are consistent with (1) the clinical manifestations of acidosis in hyperparathyroidism and alkalosis in humoral hypercalcaemia of malignancy, and (2) an independent action of a component of PTHrP beyond amino acids 1–34. Journal of Endocrinology (1990) 126, 403–408


2008 ◽  
Vol 22 (S1) ◽  
Author(s):  
Patricia Fiorino ◽  
Vera Azevedo Farah ◽  
Kalebe G Darini ◽  
Iara Cristina Araujo ◽  
Ana Paula Oliveira Leite ◽  
...  

1985 ◽  
Vol 229 (2) ◽  
pp. 545-549 ◽  
Author(s):  
M Lowry ◽  
D E Hall ◽  
J T Brosnan

Isolated perfused rat kidneys removed considerable quantities of glycyltyrosine, glycylhydroxyproline, tetraglycine and prolylhydroxyproline from the perfusate. The component amino acids are released into the perfusate and, in the case of the glycine-containing peptides, there is increased synthesis of serine. Removal of peptides was more than could be accounted for on the basis of filtration, so antiluminal metabolism is indicated. Metabolism of such peptides by the kidney may contribute to renal serine synthesis in vivo.


Sign in / Sign up

Export Citation Format

Share Document