scholarly journals Maximum convergence algorithm for WiFi based indoor positioning system

Author(s):  
Vinh Truong-Quang ◽  
Thong Ho-Sy

WiFi-based indoor positioning is widely exploited thanks to the existing WiFi infrastructure in buildings and built-in sensors in smartphones. The techniques for indoor positioning require the high-density training data to archive high accuracy with high computation complexity. In this paper, the approach for indoor positioning systems which is called the maximum convergence algorithm is proposed to find the accurate location by the strongest receiver signal in the small cluster and K nearest neighbours (KNN) of other clusters. Also, the K-mean clustering is deployed for each access point to reduce the computation complexity of the offline databases. Moreover, the pedestrian dead reckoning (PDR) method and Kalman filter with the information from the received signal strength (RSS) and inertial sensors are applied to the WiFi fingerprinting to increase the efficiency of the mobile object's position. The different experiments are performed to compare the proposed algorithm with the others using KNN and PDR. The recommended framework demonstrates significant proceed based on the results. The average precision of this system can be lower than 1.02 meters when testing in the laboratory environment with an area of 7x7 m using three access points.

Sensors ◽  
2020 ◽  
Vol 20 (18) ◽  
pp. 5343
Author(s):  
Miroslav Opiela ◽  
František Galčík

Indoor positioning systems for smartphones are often based on Pedestrian Dead Reckoning, which computes the current position from the previously estimated location. Noisy sensor measurements, inaccurate step length estimations, faulty direction detections, and a demand on the real-time calculation introduce the error which is suppressed using a map model and a Bayesian filtering. The main focus of this paper is on grid-based implementations of Bayes filters as an alternative to commonly used Kalman and particle filters. Our previous work regarding grid-based filters is elaborated and enriched with convolution mask calculations. More advanced implementations, the centroid grid filter, and the advanced point-mass filter are introduced. These implementations are analyzed and compared using different configurations on the same raw sensor recordings. The evaluation is performed on three sets of experiments: a custom simple path in faculty building in Slovakia, and on datasets from IPIN competitions from a shopping mall in France, 2018 and a research institute in Italy, 2019. Evaluation results suggests that proposed methods are qualified alternatives to the particle filter. Advantages, drawbacks and proper configurations of these filters are discussed in this paper.


2020 ◽  
Vol 10 (6) ◽  
pp. 2003 ◽  
Author(s):  
Liu Liu ◽  
Bofeng Li ◽  
Ling Yang ◽  
Tianxia Liu

For localization in daily life, low-cost indoor positioning systems should provide real-time locations with a reasonable accuracy. Considering the flexibility of deployment and low price of iBeacon technique, we develop a real-time fusion workflow to improve localization accuracy of smartphone. First, we propose an iBeacon-based method by integrating a trilateration algorithm with a specific fingerprinting method to resist RSS fluctuations, and obtain accurate locations as the baseline result. Second, as turns are pivotal for positioning, we segment pedestrian trajectories according to turns. Then, we apply a Kalman filter (KF) to heading measurements in each segment, which improves the locations derived by pedestrian dead reckoning (PDR). Finally, we devise another KF to fuse the iBeacon-based approach with the PDR to overcome orientation noises. We implemented this fusion workflow in an Android smartphone and conducted real-time experiments in a building floor. Two different routes with sharp turns were selected. The positioning accuracy of the iBeacon-based method is RMSE 2.75 m. When the smartphone is held steadily, the fusion positioning tests result in RMSE of 2.39 and 2.22 m for the two routes. In addition, the other tests with orientation noises can still result in RMSE of 3.48 and 3.66 m. These results demonstrate our fusion workflow can improve the accuracy of iBeacon positioning and alleviate the influence of PDR drifting.


Sign in / Sign up

Export Citation Format

Share Document