scholarly journals Improvement of sliding mode power control applied to wind system based on doubly-fed induction generator

Author(s):  
Btissam Majout ◽  
Douae Abrahmi ◽  
Yasmine Ihedrane ◽  
Chakib El Bakkali ◽  
Karim Mohammed ◽  
...  

In this work, we are interested in improving the performance of a doubly-fed induction generator (DFIG)-based wind system, by applying a sliding mode control strategy. The objective is the regulation of the active and reactive power, also the voltage and the frequency of the signal injected into the distribution network. The model proposed for the control is based on the sliding mode technique with performance estimators. The proposed model was validated by a simulation on MATLAB/Simulink.

2019 ◽  
Vol 63 (3) ◽  
pp. 178-190 ◽  
Author(s):  
Ibrahim Yaichi ◽  
Abdelhafid Semmah ◽  
Patrice Wira ◽  
Youcef Djeriri

This paper presents direct power control (DPC) strategies using the super-twisting sliding mode control (STSMC) applied to active and reactive power control of a doubly-fed induction generator (DFIG) supplied by a space vector modulation inverter for wind turbine system. Then, a control STSMC-DPC and SVM strategies are applied. The active and reactive powers that are generated by the DFIG will be decoupled by the orientation of the stator flux and controlled by super-twisting sliding mode control. Its simulated performance is then compared with conventional sliding mode control. The test of robustness of the controllers against machine parameters uncertainty will be tackled, and the simulations will be presented. Simulation results of the proposed controller (SMC-DPC) and (STSMC-DPC) scheme are compared for various step changes in the active and reactive power. This approach super-twisting sliding mode control is validated using the Matlab/Simulink software and the results of the simulation can prove the excellent performance of this control in terms of improving the quality of the energy supplied to the electricity grid.


2016 ◽  
Vol 10 (8) ◽  
pp. 1
Author(s):  
Faraz Chamani ◽  
Mohammad Satkin

Wind energy is one of the extraordinary sources of renewable energy due to its clean character and free availability. With increase in wind power penetration, the wind farms are directly influencing the power systems. The majority of wind farms are using variable speed wind turbines equipped with doubly fed induction generators (DFIG) due to their advantages over other wind turbine generators (WTGs). Therefore, the analysis of wind power dynamics with the DFIG wind turbines has become a very important research issue, especially during transient faults. In this article, a controller is provided to control the active and reactive power of a wind system equipped with doubly fed induction generator. The generator is connected to the grid by a back to back converter that gets benefit from control system known as single periodic controller. Grid and generator side converters respectively control the generator speed and reactive power using proposed controller. In order to increase the accuracy of controller, we optimized its PI parameters using genetic optimization algorithm. Finally, simulation results conducted by the MATLAB software are shown. The results of simulation gained through this system, show the capability of proposed controller under error conditions for controlling active and reactive power and also elimination of harmonics caused by non-linear load.


Sign in / Sign up

Export Citation Format

Share Document