scholarly journals The Least-Energy Sign-Changing Solutions for Planar Schrödinger-Newton System with an Exponential Critical Growth

2020 ◽  
Vol 9 (6) ◽  
pp. 118
Author(s):  
Wenbo Wang ◽  
Wei Zhang ◽  
Yongkun Li
2017 ◽  
Vol 13 (3) ◽  
pp. 4763-4778
Author(s):  
Zhaohong Sun

In this paper, we study the existence of multiple sign-changing solutions with a prescribed Lp+1−norm and theexistence of least energy sign-changing restrained solutions for the following nonlinear Schr¨odinger-Poisson system:−△u + u + ϕ(x)u = λ|u|p−1u, in R3,−△ϕ(x) = |u|2, in R3.By choosing a proper functional restricted on some appropriate subset to using a method of invariant sets of descending flow,we prove that this system has infinitely many sign-changing solutions with the prescribed Lp+1−norm and has a least energy forsuch sign-changing restrained solution for p ∈ (3, 5). Few existence results of multiple sign-changing restrained solutions areavailable in the literature. Our work generalize some results in literature.


Author(s):  
B. B. V. Maia ◽  
O. H. Miyagaki

In this paper, we investigate the existence and nonexistence of results for a class of Hamiltonian-Choquard-type elliptic systems. We show the nonexistence of classical nontrivial solutions for the problem \[ \begin{cases} -\Delta u + u= ( I_{\alpha} \ast |v|^{p} )v^{p-1} \text{ in } \mathbb{R}^{N},\\ -\Delta v + v= ( I_{\beta} \ast |u|^{q} )u^{q-1} \text{ in } \mathbb{R}^{N}, \\ u(x),v(x) \rightarrow 0 \text{ when } |x|\rightarrow \infty, \end{cases} \] when $(N+\alpha )/p + (N+\beta )/q \leq 2(N-2)$ (if $N\geq 3$ ) and $(N+\alpha )/p + (N+\beta )/q \geq 2N$ (if $N=2$ ), where $I_{\alpha }$ and $I_{\beta }$ denote the Riesz potential. Second, via variational methods and the generalized Nehari manifold, we show the existence of a nontrivial non-negative solution or a Nehari-type ground state solution for the problem \[ \begin{cases} -\Delta u + u= (I_{\alpha} \ast |v|^{\frac{\alpha}{2}+1})|v|^{\frac{\alpha}{2}-1}v + g(v) \hbox{ in } \mathbb{R}^{2},\\ - \Delta v + v= (I_{\beta} \ast |u|^{\frac{\beta}{2}+1})|u|^{\frac{\beta}{2}-1}u + f(u), \hbox{ in } \mathbb{R}^{2},\\ u,v \in H^{1}(\mathbb{R}^{2}), \end{cases} \] where $\alpha ,\,\beta \in (0,\,2)$ and $f,\,g$ have exponential critical growth in the Trudinger–Moser sense.


Sign in / Sign up

Export Citation Format

Share Document