nonlinear boundary
Recently Published Documents


TOTAL DOCUMENTS

2360
(FIVE YEARS 312)

H-INDEX

53
(FIVE YEARS 6)

2022 ◽  
pp. 108128652110661
Author(s):  
Andaluzia Matei ◽  
Madalina Osiceanu

A nonlinear boundary value problem arising from continuum mechanics is considered. The nonlinearity of the model arises from the constitutive law which is described by means of the subdifferential of a convex constitutive map. A bipotential [Formula: see text], related to the constitutive map and its Fenchel conjugate, is considered. Exploring the possibility to rewrite the constitutive law as a law governed by the bipotential [Formula: see text], a two-field variational formulation involving a variable convex set is proposed. Subsequently, we obtain existence and uniqueness results. Some properties of the solution are also discussed.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 98
Author(s):  
Xuejiao Chen ◽  
Yuanfei Li ◽  
Dandan Li

In this paper, we consider the Brinkman equations pipe flow, which includes the salinity and the temperature. Assuming that the fluid satisfies nonlinear boundary conditions at the finite end of the cylinder, using the symmetry of differential inequalities and the energy analysis methods, we establish the exponential decay estimates for homogeneous Brinkman equations. That is to prove that the solutions of the equation decay exponentially with the distance from the finite end of the cylinder. To make the estimate of decay explicit, the bound for the total energy is also derived.


Author(s):  
Chein-Shan Liu ◽  
Essam R. El-Zahar ◽  
Chih-Wen Chang

Abstract In the paper, we develop two novel iterative methods to determine the solution of a second-order nonlinear boundary value problem (BVP), which precisely satisfies the specified non-separable boundary conditions by taking advantage of the property of the corresponding boundary shape function (BSF). The first method based on the BSF can exactly transform the BVP to an initial value problem for the new variable with two given initial values, while two unknown terminal values are determined iteratively. By using the BSF in the second method, we derive the fractional powers exponential functions as the bases, which automatically satisfy the boundary conditions. A new splitting and linearizing technique is used to transform the nonlinear BVP into linear equations at each iteration step, which are solved to determine the expansion coefficients and then the solution is available. Upon adopting those two novel methods very accurate solution for the nonlinear BVP with non-separable boundary conditions can be found quickly. Several numerical examples are solved to assess the efficiency and accuracy of the proposed iterative algorithms, which are compared to the shooting method.


Author(s):  
Suman Sarkar ◽  
Bikash Sahoo

This paper investigates the third-order nonlinear boundary value problem, resulting from the exact reduction of the Navier-Stokes equation caused by the magnetohydrodynamics boundary layer flow near a stagnation point on a rough plate. The governing partial differential equations are transformed into a nonlinear ordinary differential equation and partial slip boundary conditions by an appropriate similarity transformation. In this previous work, the boundary value problem (BVP) was investigated numerically, and a lot of speculations regarding the existence and behavior of the solutions were carried out. The primary objective of this article is to verify these speculations mathematically. In this work, we have proved that there is a unique solution for all parameters values, and further, the solution has monotonic increasing first derivative. Moreover, the resulting nonlinear boundary value problem is solved by shifted Chebyshev collocation method. We compare the present numerical results with the previous results for the particular physical parameters, concluding that the results are highly accurate. The velocity profiles and streamlines are also plotted to address the significance of the parameters. Our manuscript is a judicial mix between mathematical and numerical methods.


Sign in / Sign up

Export Citation Format

Share Document