boundary problem
Recently Published Documents


TOTAL DOCUMENTS

1929
(FIVE YEARS 304)

H-INDEX

47
(FIVE YEARS 4)

Author(s):  
Yuk Leung

Let a particle start at some point in the unit interval I := [0, 1] and undergo Brownian motion in I until it hits one of the end points. At this instant the particle stays put for a finite holding time with an exponential distribution and then jumps back to a point inside I with a probability density μ0 or μ1 parametrized by the boundary point it was from. The process starts afresh. The same evolution repeats independently each time. Many probabilistic aspects of this diffusion process are investigated in the paper [10]. The authors in the cited paper call this process diffusion with holding and jumping (DHJ). Our simple aim in this paper is to analyze the eigenvalues of a nonlocal boundary problem arising from this process.


2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yuki Kaneko ◽  
Hiroshi Matsuzawa ◽  
Yoshio Yamada

<p style='text-indent:20px;'>We study a free boundary problem of a reaction-diffusion equation <inline-formula><tex-math id="M1">\begin{document}$ u_t = \Delta u+f(u) $\end{document}</tex-math></inline-formula> for <inline-formula><tex-math id="M2">\begin{document}$ t&gt;0,\ |x|&lt;h(t) $\end{document}</tex-math></inline-formula> under a radially symmetric environment in <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>. The reaction term <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> has positive bistable nonlinearity, which satisfies <inline-formula><tex-math id="M5">\begin{document}$ f(0) = 0 $\end{document}</tex-math></inline-formula> and allows two positive stable equilibrium states and a positive unstable equilibrium state. The problem models the spread of a biological species, where the free boundary represents the spreading front and is governed by a one-phase Stefan condition. We show multiple spreading phenomena in high space dimensions. More precisely the asymptotic behaviors of solutions are classified into four cases: big spreading, small spreading, transition and vanishing, and sufficient conditions for each dynamical behavior are also given. We determine the spreading speed of the spherical surface <inline-formula><tex-math id="M6">\begin{document}$ \{x\in \mathbb{R}^N:\ |x| = h(t)\} $\end{document}</tex-math></inline-formula>, which expands to infinity as <inline-formula><tex-math id="M7">\begin{document}$ t\to\infty $\end{document}</tex-math></inline-formula>, even when the corresponding semi-wave problem does not admit solutions.</p>


2021 ◽  
Vol 2131 (3) ◽  
pp. 032091
Author(s):  
A M Slidenko ◽  
V M Slidenko ◽  
S G Valyukhov

Abstract There have been examined the mathematic model of the impact device provided for geological materials destruction. Basic elements of the impact device are variable cross-section tool, striker and impact device body. The interaction of these elements is described as a movement of two discrete mass and the rod in the presence of rigid and dissipative connections. One equation in partial derivatives and two ordinary differential equations associated by initial and boundary conditions represent the initial-boundary problem. The numerical method parameters of which are determined at tests problems solution by Fourier method is used for looking for solutions of mixed initial-boundary problem. Researches are made, and parameters determining the damping efficiency of tool, striker and impact device body oscillations are evaluated.


Author(s):  
Murat Sari ◽  
Seda Gulen

Abstract Valuation of the American options encountered commonly in finance is quite difficult due to the possibility of early exercise alternatives. Since an exact solution for the American options does not exist, effective numerical methods are needed to understand the behavior of option pricing models. Therefore, in this paper, a new approach based on a high-order difference scheme is proposed to discuss the valuation of an American put option as a free boundary problem. Using a front-fixing approach that transforms the unknown free boundary (optimal stopping) into a fixed one, a sixth-order finite difference scheme (FD6) in space and a third-order strong-stability preserving Runge–Kutta (SSPRK3) in time are applied to the model converted to a nonlinear partial differential equation. The computed results revealed that the combined method is seen to attempt to pull up the capacity of the algorithm to achieve higher accuracy. It is seen that the quantitative and qualitative results produced by the method proposed with minimal computational effort are sufficiently accurate and meaningful. Therefore, this article provides some new insights about the physical characteristics of financial problems and such realistic phenomena.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 463
Author(s):  
Laura Andrianopoli ◽  
Lucrezia Ravera

We review the geometric superspace approach to the boundary problem in supergravity, retracing the geometric construction of four-dimensional supergravity Lagrangians in the presence of a non-trivial boundary of spacetime. We first focus on pure N=1 and N=2 theories with negative cosmological constant. Here, the supersymmetry invariance of the action requires the addition of topological (boundary) contributions which generalize at the supersymmetric level the Euler-Gauss-Bonnet term. Moreover, one finds that the boundary values of the super field-strengths are dynamically fixed to constant values, corresponding to the vanishing of the OSp(N|4)-covariant supercurvatures at the boundary. We then consider the case of vanishing cosmological constant where, in the presence of a non-trivial boundary, the inclusion of boundary terms involving additional fields, which behave as auxiliary fields for the bulk theory, allows to restore supersymmetry. In all the cases listed above, the full, supersymmetric Lagrangian can be recast in a MacDowell-Mansouri(-like) form. We then report on the application of the results to specific problems regarding cases where the boundary is located asymptotically, relevant for a holographic analysis.


Sign in / Sign up

Export Citation Format

Share Document