scholarly journals A LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTION INVOLVING THE GAMMA FUNCTION

2010 ◽  
Vol 14 (4) ◽  
pp. 1623-1628 ◽  
Author(s):  
Feng Qi ◽  
Bai-Ni Guo
2015 ◽  
Vol 3 (4) ◽  
pp. 140 ◽  
Author(s):  
Fang-Fang Liu ◽  
Xiao-Ting Shi ◽  
Feng Qi

<p><span>In the paper, the authors find necessary conditions and sufficient conditions for a function involving the gamma function and originating from investigation of properties of the Catalan numbers and function in combinatorics to be logarithmically completely monotonic.</span></p>


2005 ◽  
Vol 36 (4) ◽  
pp. 303-307 ◽  
Author(s):  
Chao-Ping Chen ◽  
Feng Qi

We prove: (i) A logarithmically completely monotonic function is completely monotonic. (ii) For $ x>0 $ and $ n=0, 1, 2, \ldots $, then$$ (-1)^{n}\left(\ln \frac{x \Gamma(x)}{\sqrt{x+1/4}\,\Gamma(x+1/2)}\right)^{(n)}>0. $$(iii) For all natural numbers $ n $, then$$ \frac1{\sqrt{\pi(n+4/ \pi-1)}}\leq \frac{(2n-1)!!}{(2n)!!}


2018 ◽  
Vol 97 (3) ◽  
pp. 453-458
Author(s):  
JENICA CRINGANU

We use properties of the gamma function to estimate the products$\prod _{k=1}^{n}(4k-3)/4k$and$\prod _{k=1}^{n}(4k-1)/4k$, motivated by the work of Chen and Qi [‘Completely monotonic function associated with the gamma function and proof of Wallis’ inequality’,Tamkang J. Math.36(4) (2005), 303–307] and Morticiet al.[‘Completely monotonic functions and inequalities associated to some ratio of gamma function’,Appl. Math. Comput.240(2014), 168–174].


2013 ◽  
Vol 63 (3) ◽  
Author(s):  
Bai-Ni Guo ◽  
Jiao-Lian Zhao ◽  
Feng Qi

AbstractThe di-gamma function ψ(x) is defined on (0,∞) by $\psi (x) = \frac{{\Gamma '(x)}} {{\Gamma (x)}} $ and ψ (i)(x) for i ∈ ℕ denote the polygamma functions, where Γ(x) is the classical Euler’s gamma function. In this paper we prove that a function involving the difference between [ψ′(x)]2 + ψ″(x) and a proper fraction of x is completely monotonic on (0,∞).


2015 ◽  
Vol 3 (2) ◽  
pp. 77
Author(s):  
Bai-Ni Guo ◽  
Feng Qi

Let \(\Gamma\) and \(\psi=\frac{\Gamma'}{\Gamma}\) be respectively the classical Euler gamma function and the psi function and let \(\gamma=-\psi(1)=0.57721566\dotsc\) stand for the Euler-Mascheroni constant. In the paper, the authors simply confirm the logarithmically complete monotonicity of the power-exponential function \(q(t)=t^{t[\psi(t)-\ln t]-\gamma}\) on the unit interval \((0,1)\), concisely deny that \(q(t)\) is a Stieltjes function, surely point out fatal errors appeared in the paper [V. Krasniqi and A. Sh. Shabani, On a conjecture of a logarithmically completely monotonic function, Aust. J. Math. Anal. Appl. 11 (2014), no.1, Art.5, 5 pages; Available online at http://ajmaa.org/cgi-bin/paper.pl?string=v11n1/V11I1P5.tex], and partially solve a conjecture posed in the article [B.-N. Guo, Y.-J. Zhang, and F. Qi, Refinements and sharpenings of some double inequalities for bounding the gamma function, J. Inequal. Pure Appl. Math. 9 (2008), no.1, Art.17; Available online at http://www.emis.de/journals/JIPAM/article953.html].


2006 ◽  
Vol 113 (8) ◽  
pp. 764
Author(s):  
Walther Janous ◽  
Rolf Richberg

Sign in / Sign up

Export Citation Format

Share Document